
Exception Handling with Resumption:
Design and Implementation in Java

Alexander Gruler
Dept. of Computer Structures, University of Ulm†

89069 Ulm, Germany

Christian Heinlein
Dept. of Computer Structures, University of Ulm

89069 Ulm, Germany

ABSTRACT— Nowadays, nearly every mainstram program-
ming language includes an exception handling mechanism. Ba-
sically, the variety of these mechanisms can be devided in two
groups according to their handling models: Mechanisms which
support exception termination and those which support resump-
tion. Even though resumption was still an attractive alternative
to termination for the first exception handling mechanisms in the
1980s, it has nearly been displaced completely in contemporary
languages by termination. Some reasons for this trend will be
reviewed in this work. But in our opinion, they do not justify
to reject resumption completely. To the contrary, resumption can
simplify some tasks extremely while still being implementable with
reasonable effort. To show this, we discuss some basic concepts
of how a resumption mechanism should be designed in general
and propose new syntactical constructs to support these concepts.
Based on these concepts, we describe the implementation of a
prototypical precompiler for Java supporting exception handling
with resumption. In fact, the mechanism implemented in the
precompiler not only extends, but completely subsumes the Java
mechanism, for it is capable of both, termination and resumption.

KEYWORDS— Flexible Exception Handling, Java, Re-
sumption, Prototypical Implementation, Precompiler.

I. I NTRODUCTION

W ITHIN the last two decades of software evolu-
tion, offering an exception handling mechanism

(EHM) has become a key feature in modern programming
language design. Almost all modern EHMs of various
programming languages separate the “normal” code of a
program from its error–handling code in order to meet the
increasing modularity demands of programs and to provide
a comfortable way of dealing with errors. However, this
separation necessitates to think about the control flow of a
program in connection with an EHM.
At present, in most mainstream languages such as Java
or C++, the common way of directing the control flow
after a responsible exception handler has been found and
executed, istermination, i.e. not returning to the point
where the exception has occurred and resuming the pro-
gram’s execution from there, but instead unwinding the
(process) stack and continuing execution at the level of the
respective handler. We agree with B. Meyer, the designer of
Eiffel, that the only reasonable alternative to termination is
resumptionwith the motivation to “cure” the error that has
caused the exception and to continue/resume the original
execution afterwards [1].
This work describes, how the EHM of Java and other

† Author’s new address: Chair IV, Software & Systems Engineering,
Technical University of Munich, 85748 Garching, Germany

languages can be extended by the ability to resume ex-
ecution after completion of the respective handler, at the
point where the exception has been raised. Beforehand,
in the remainder of this section, we define a terminology
and recall the advantages and disadvantages of resumption.
In section II we will have a look at existing EHMs
that support resumption. In section III, we will clarify
some general, conceptual issues concerning the design of
an EHM that supports resumption: How should such a
mechanism in general be designed to provide a safe and
(for the programmer) comprehensible way of dealing with
exceptions and to overcome the disadvantages of former
EHMs. Of course, these resulting concepts are applica-
ble to any resumption mechanism, i.e. independent of a
specific programming language. Based on these general
concepts, we describe in section IV the construction of
a precompiler for Java that extends the existing EHM of
the language. We have deliberately chosen Java as the
“target language” for the precompiler for several reasons:
First and foremost, Java already offers a sophisticated
EHM that provides a solid basis to build onto. Also, some
lingustic properties of Java have turned out to be very
suitable for the implementation in that they allow to keep
it on a very high level of the language, i.e. to avoid
descending into the very fundamental mechanisms of a
compiler (e.g. changing the program counter, stack pointer,
etc. explicitly). Furthermore, Java is a very popular, modern
language which guarantees that the concepts will reach a
large variety of people. Section V concludes the paper.

A. Terminology

For the sake of clarity, this section briefly introduces
a terminology that will be used throughout this work.
A system that executes programs has to be able to deal
with unexpected events that only occur during runtime
and that are usually not predictable at compile time. Such
an unexpected event or abnormal condition is commonly
referred to as anexception. Systems that support signalling,
handling and detection of exceptions are said to provideex-
ception handling(EH). Theexception handling mechanism
(EHM) of a system determines how exceptions affect the
control flow of a program.

During the execution of a program the system is always
in one of two states:normal activityor exceptional activity.
The occurence of an exception makes a system change
from normal to exceptional activity. This means, that
the standard continuationof the program is replaced by

an exceptional continuation[2], i. e., the program will
continue differently after an exception has occurred.

An exception is caused either by an error or by any
other event that occurs during the normal execution of a
program, preventing the program from following its normal
execution path[3] and leading it into anexceptional state.
The method (procedure, routine) or the block of code in
which the exception occurs is referred to as thefaulting
methodor the faulting block.

The specification of aprotected regionallows to define
handlers for a certain block of statements. Ahandler is
the place where control is transferred to, after an exception
has been raised. Since a handler usually constitues a scope
and/or a block of its own, we also speak of thehandling
context. Usually different handlers can be specified (for
the same protected region) to react on different kinds of
exceptions. Thehandling modelof an EHM determines
how/where to continue after the completion of the responsi-
ble handler. In a handling model that supports resumption,
we call a handler that continues (or that might continue)
execution at the raising context aresuming handler.

The signalling of an exception is calledraising or throw-
ing. The place where an exception is raised will be referred
to as theraising point. The current environment (block,
method) containing the raising point is called theraising
context. After an exception has been raised, it is propagated
(automatically or explicitly) through the handler hierarchy
until an appropriate handler is found.

B. Arguing about Resumption

Since the first EHMs have been included in languages
like CLU [4] or PL/I in the mid 1970s , language designers
have increasingly tended to offer termination solely. Rea-
sons for that are often given as: the utility of resumption
does not justify its “cost,” or resumption makes the control
flow of a program too difficult to understand and therefore
more error-prone. The developers of CLU (which was
beside PL/I the first language that included an EHM)
rejected resumption,“because it was complex and also
because we[the developers of CLU]believed that most of
the time, termination was what was wanted. Furthermore,
if resumption were wanted, it could be simulated by passing
a procedure as an argument ...”[4].
Actually, Bjarne Stroustrup presented similar reasons why
he has chosen termination as the only handling model for
C++ [5]. Firstly, he based his decision on the experience re-
ports of several language designers which have been using
EHMs for a long time, while constructing and/or working
with languages like for example Cedar and Mesa. Some of
these designers even were early proponents of resumption,
but have obviously changed their minds, because during
the years, the use of resumption in their systems decreased
gradually and has always been replaced by“a more
appropriate design” [6]. Stroustrup presents some other
reasons to reject resumption in [7]: The fact, that a part
of a program might gain control back due to resumption,
is a problem to the extent, that the handler might have

changed the context of the faulting block/procedure. So,
after the completion of the handler, essential conditions
or assumptions about the state of the environment at the
raising point might now be different compared to how
they were before the execution of the responsible handler.
Therefore, he points out that, with resumption,“raising an
exception ceases to be a reliable way of escaping from a
context” [7]. In general, he doubts conditional resumption
and suggests to simulate it by a function call instead, for
in his opinion, resumption is only a “[...]non-obvious, and
error-prone form of co-routines.”[7].

Certainly, the reasons given by Stroustrup are not wrong
and we agree with him to the extent, that the nature of
resuming exception handlers is very similar to the one
of function calls. Actually, the implementation proposed
in section IV makes use of this property by internally
transforming resuming handlers into local methods. But as
it will also turn out in section IV, this does not do the job
completely: Assuming that we would mimick resumption
with methods only, what should the mimicking method do
for example, if it cannot cure the cause for the exception?
In this case, usual termination (i.e., unwinding the stack)is
what is actually wanted. In such a situation it would make
no sense at all to resume, which means for the method to
return. This is only one example why a language should
support resumption with built-in, linguistic facilities and
not leave the whole job to the programmer.
The problem, that a handler might change the environment
of the raising point, can also be solved, if we allow a
resuming handler to “return” some information back to
the raising point and in that way to “inform” the raising
context about the changes made during its execution. This
is analogous to a signalling statement which also transports
information in form of the thrown exception (object).
With these and similar minor changes, the only point of
criticism that remains, is that resumption is rarely used
and therefore the effort to implement it is always too high.
But in our opinion, this reason alone does not justify to
reject resumption completely, in particular if the effort
of implementing such a mechanism remains moderate,
as we will see in section IV. Besides, there are indeed
many realistic situations where the use of a resumption
mechanism can simplify things significantly. E.g., while
an OutOfMemory Error is nearly always treated as final
and not curable, it could be solved in certain scenarios by
freeing data structures (in a handler) which were kept in
the memory only for performance reasons, and resuming
execution at the raising context afterwards.
Another example is the processing performed by a parser:
During the syntactic analysis a parser reads and analyses
the grammatical structure of a given input, with respect to
a given grammar. If the input does not obey this grammar,
it signals an error, usually by raising a kind of “Parse
Exception”. Therefore, with an EHM based on termination,
a very simple parser can be constructed by simply raising
an exception on encountering a grammatical error in the
input. Of course, such a parser is not capable of detecting

more than one error in the input in a single run for the EHM
always terminates after the first error. But nearly every
contemporary parser is able to detect and to report multiple
errors in the input file in a single run over the input. Such
a parser usually uses a special technique: On encountering
an error in the input it tries to “repair” the error by
guessing an alternative to the currently parsed (erroneous)
token and adjusting the input accordingly. Hoping that the
guess was right, the remaining input can then be parsed.
This technique could be implemented very comfortably
using a resumption-mechanism: On encountering an error,
the parser simply throws a corresponding exception. The
responsible handler adjusts the input according to the guess
and resumes afterwards. The parser can now proceed to
check the remaining input for errors.

II. RELATED WORK

Of course, resumption is not a new concept for a
handling model and, as seen in the last section, since
the introduction of the first EHM in languages in the
mid 1970s, language developers have been arguing and
thinking about resumption. Resumption was already of-
fered by earlier languages like e.g. PL/I, Mesa, BETA, and
Lore, but “newer” implementations of a resumption mech-
anism are rarely found: R. Govindarajan presented a work
about EH in functional programming languages [8], where
he clearly separates between termination and resumption
mechanisms. Schreiner (et al.) describes how resumption
can be simulated in regular Java [9]. His article is the basis
of our implementation, but as we will see in section IV, it
is by no means sufficient for a complete implementation
of a resumption mechanism for a programming language.
But beside this, for popular, contemporary langagues, there
is no known implementation of a resumption mechanism,
in particular not for Java and C++.

The EHM offered by Eiffel [10] actually does not
provide resumption, but only a retry mechanism, which is
a combination of resumption and termination, even though,
strictly speaking,retry is only a special form of termina-
tion. The fundamental difference between resumption and
retry is, that a retry mechanism unwinds the process stack
exactly like with termination and re-executes the whole
faulting procedure a second time instead of continuing
execution directly after the raise statement, as resumption
does. Thus, in Eiffel, a handler can be attached to a
whole routine by adding arescue clause to the routine’s
definition which may contain aretry statement which
causes the system to unwind the stack and to re-execute
the whole routine a second time.

A signalling construct (throw-accept) is also offered
in the Lisp [11] language family. But here, it is not intended
for EH, but to provide a more drastic form of areturn to
exit from a block and transfer control back through several
function calls. However, it does not offer resumption.
More interestingly is thecondition mechanism of Lisp,
for it offers a rudimentary kind of resumption. Conditions
in Lisp are what exceptions are in other languages. They

can be signalled by many different operators. One of
them is thecheck-type macro, that allows to signal
a correctable error[11]. This means, that the handler for
the condition enables the user to provide a corrected value.

BETA [12] offers a more complete resumption mech-
anism based on its pattern mechanism which replaces
types, classes, functions, and also exceptions. In particular,
a virtual pattern dealing with an exception is called an
exception [12]. Exceptions can be associated with class or
procedure patterns. The default action for an occurence
of an exception (Exception pattern) is the termina-
tion of the whole program, but this may be avoided by
explicitly specifying Continue within the description
of an exception pattern. Resumption (also called “partial
recovery”) can be achieved by defininglabels and restart
the execution at such labels from within a handler by means
of a restart operator. However, BETA does not allow
to pass information along with arestart (which is a
major conceptual disadvantage; see section III).

III. C ONCEPTUAL DESIGN

Most of the points of criticism, that were presented so
far, can be avoided by designing the resumption mechanism
appropriately. Therefore, we discuss in this section some
design issues of a resumption mechansim. As a result, we
propose a general syntax, that overcomes the points of
criticism as well as some disadvantages of other EHMs
supporting resumption.

A. Theresume Statement

The first question that arises, is how or, in particular,
whereto indicate resumption. Basically, there are only two
possibilities: Firstly, the decision whether to resume or not
can be made at the raising point, i.e. by the raise statement
itself. This implies that a language would have to offer two
different raise statements: one for the termination model
and another one for resumption, i.e. where the handler
always “returns” and resumes execution at the raising
point. The main advantage of this possibility is, that there
is no doubt about the continuation of the control flow.
In particular, it is already known in the raising context,
whether a handler will resume or not.
But is this feasible? Usually only after having tried to cure
the cause of an exception, we can say, whether the attempt
was successful or not. Therefore, only the handler of an
exception can decide, whether it could cure the cause for
an exception or not. And, as already emphasized in section
I, this knowledge is essential, because resumption only
makes sense with the motivation to cure the cause for the
exception before resuming normal execution. Therefore,
we suggest, that the respective handler should indicate,
whether to terminate or to resume.
This indication is best done by means of a newresume
statement which might optionally appear within a handler.
Consequently, the missing of such a statement (or the fact
that it is not executed at runtime) indicates termination. A
resume in a handler is similar to areturn in a function:

Both end the execution of the respective environment. Like
a return in a function, aresume can basically occur
everywhere in a handler, i.e. not only at the end.

The motivation behind resumption was, that the cause
for an exception has to be fixed by the responsible handler,
before the program can continue normally. Therefore, a
resuming handler usually has to perform some changes
in the state of the system. But the raising context of
the respective exception still assumes the old state of
the system, as it was at the time when the exception
has been thrown. This means, that a resuming handler
needs a facility to inform the handling context about the
changes that were made. From another point of view: this
information itself can contain and/or could be seen as the
solution for the cause of the exception.
Passing information from the handling context back to
the raising point is best done by allowing theresume
statement to have a “parameter” analogous to the parameter
of athrow statement in Java. Thus theresume statement
has the following form, where<expression> denotes
the “parameter” which is evaluated and passed back to the
raising context:

<resume_stmt> ::= "resume" <expression> ";"

In languages where exceptions are represented as objects
it is sufficient for theresume statement to have a single
paramter, for the parameter itself can be an object of a
certain type (and have multiple fields). As we shall see
in section III-B, such a parameter can be accessed in the
raising context.

B. accept Blocks

We recall that one point of criticism against a resumption
mechanism was, that the state of the handling context
might have been changed during the execution of the re-
spective handler. Therefore, after the handler has resumed,
the code following the raise statement cannot assume that
the state of the environment (states of objects, variables,
etc.) is still the same as before the exception was raised.
Therefore, the code following the raise statement has to be
able to deal with different situations, depending on what
changes the respective handler has made before resuming.
The design of the EHM should support the programmer to
deal with these different situations. For this purpose, we
introduce so-calledaccept blocks which can be attached
to athrow statement like e.g.catch handlers to atry
block in Java. In particular, the specification of anaccept
block also contains the declaration of a variable of a certain
type. An EBNF definition of the syntax is shown below:

<throw_stmt> ::= "throw" <expression>
(";" | (<accept_block>)*)

<accept_block> ::= "accept"
"(" <type> <identifier> ")"
"{" <block> "}"

So, everyaccept block contains instructions to deal
with a single kind of situation in the raising context. But,
how does the EHM determine whichaccept block has to

be executed? This is exactly the point, where theresume
statement andaccept blocks fit together: The type of
the object returned by theresume statement determines
theaccept block that will be executed, in the same way
as the type of the object thrown by athrow statement
determines thecatch block that will be executed. So,
depending on what kind of solution the handler has per-
formed to cure the cause for the exception, it sets the
parameter of theresume statement appropriately to tell
the raising context which changes it has made.
So, in a resumption mechanism, we basically need two
symmetric facilities: Firstly (as with termination), a raise
statement together with respective handlers for signalling
an exception (in the direction from the raising point to the
handler) and secondly, aresume statement in combination
with one or moreaccept blocks (for sending the solution
back from a resuming handler to the raising context.).

Figure 1 shows a small example (using a Java-like
syntax): Methoda() calls methodb() within a protected
region (try block), which has, beside another handler,
a handler for an exception of typeException2. The
handler contains aresume statement that “resumes”
(returns) an object of the user-defined typeSolution.
Somewhere within methodb() an exception of type
Exception2 will be thrown and consequently be caught
in the respective handler in methoda(). In this scenario,
the variableerror is curable evaluates totrue and
therefore the handler resumes and returns an object of type
Solution. Thus, execution continues with theaccept
block for the typeSolution in method b(). When
the end of theaccept block has been reached, the
system continues normally with the first statement follow-
ing thethrow-accept construct, i.e. following thelast
accept block.

public void a() {
try { b(); }
catch (Exception1 e1) { }
catch (Exception2 e2) {

/* Try to cure the cause. */
if (error_is_curable)
resume new Solution("the solution");

else { /*Clean up and proceed*
as with termination./ } }

public void b () throws Exception2 {
......
throw new Exception2("Caused by error")
accept (Solution s1) { }
accept (AnotherSolution s2) { }
...... }

Fig. 1. A simple resumption scenario demonstrating the new syntax.

IV. I MPLEMENTATION

This section presents aprototypical implementation of
a resumption mechanism for Java, i.e. an implemenation
that does not aim to be optimized in terms of performance
or reduced EH overhead [3]. However, it shows that a

resumption mechanism is rather easily and at the same time
affordably to construct. Since a complete description of the
implementation is far beyond the scope of this paper, we
can only outline the basic ideas and principles — however,
a complete description of the implementation is given in
[13]. In order to demonstrate the concepts proposed in
section III, we have decided to integrate the resumption
mechanism into regular Java by constructing a precom-
piler that transforms the new constructs necessary for the
resumption functionality into regular Java constructs. The
result of this transformation can be compiled and executed
by every Java Virtual Machine (JVM).
In particular, we wanted to provide an implementation
that is 100% compatible to existing Java code which
does not know anything about a resumption mechanism
and only uses the regular EHM of Java. The price for
this downward–compatibility were some changes to the
conceptual design which will be described in sect. IV-A.
The implementation itself was done at a “high level” of
the language, i.e. only the existing EHM of Java and some
other language constructs are used. So we rely exclusively
on what is offered by standard Java — in particular, the
implementation does not set the program counter or the
stack pointer explicitly, nor is it necessary to dig deeply
into the runtime environment of the system itself by means
of the Java Debugger Interface (JDI) or anything alike.
Considering the implementation effort, the fact that the
implemenation can be done at a high level disproves espe-
cially the point of criticism that implementing a resumption
mechanism has to be very expensive.

A. Necessary Adjustments to the Syntax

According to the conceptual design of the resumption
mechanism, it wasnot necessary to have different kinds of
handlers for termination and resumption, respectively. But
in order to be compatible to existing Java code, we have
to introduce a new kind of handler, therecover block.
Imagine the situation, where for example a methodx()
includes a protected region with aresuminghandler for
exceptions of type T. Within this protected region, method
x() calls another methody(), which was developed prior
to the introduction of the resumption mechanism (e.g. a
library routine). This methody() knows nothing about
a resumption mechanism, but nevertheless could use the
regular EHM of Java. Ify() now coincidentally throws
a regular (terminating) exception of typeT, the attached
handler forT in methodx() would be responsible and
would handle this exception. But as soon as the handler
tries to resume, the system would crash, because the EHM
tries to resume execution at the raising point, which is
the methody(). But methody() certainly never was
designed to deal with a resumption, i.e. it only includes
a regularthrow statement without anyaccept blocks.
To avoid such errors with existing code, an implementation
has to provide separate handlers for the resumption and the
termination model respectively. We emphasize again, that
this is only necessary to stay compatible with existing Java

code, that uses the regular EHM of Java!
Therefore, the oldcatch block remains the handler for
terminating exceptions only. For terminatingand/or resum-
ing exceptions, we introduce a new construct: arecover
block/handler. Depending on whether arecover block
contains and excutes aresume statement or not, it
continues with resumption or termination, respectively.
Syntactically, arecover handler looks exactly like a
correspondingcatch handler in Java, except for the
keywordrecover. However, the handlers are completely
independent: Acatch block handles only terminating
exceptions, i.e. exceptions that were thrown by a simple
throw statement, while arecover block only handles
exceptions thrown by athrow-accept statement. In
particular, acatch and arecover handler for the same
type donot interfere with each other.

B. Code Transformation

The precompiler itself can be constructed quite easily
with JavaCC [14]. Actually, the bigger challenge is how
to transform the new statements for resumption into cor-
responding,regular Java code. This section presents these
transformations and the resulting output of the precompiler.

1) Basic Ideas: In a paper on EH in C++ [7], B.
Stroustrup suggests that resumption could be achieved
through ordinary function calls. Schreiner has concretized
this idea in another article on exceptions [9] and proposes
a basic skeleton of how this can be achieved in Java. The
implementation described here largely bases on his ideas.

So, in order to implement a resumption mechanism
without actually setting the stack pointer excplicitly (as
with goto constructs or thesetjmp/longjmp facility of
C++), we have to simulate the part of exceptional activity
in which the user might possibly resume, with method
calls. Since, in this implementation, onlyrecover han-
dlers can possibly resume, every control transfer to a
recover handler has to be transformed by the precom-
piler into a method call. Hence, to achieve resumption, a
resume statement in arecover handler can be directly
mapped into areturn statement of the implementing
method. If therecover handler does not contain or does
not execute aresume statement , we use the original EHM
of Java to unwind the process stack by throwing a (real)
exception and catching it at the appropriate place (thetry
block defining the originalrecover handler) and thus
achieve/simulate termination. Normalcatch handlers are
not touched by the precompiler and therefore will work in
the usual manner. Actually, all original constructs for EHM
of Java will not be transformed at all (except for original
throws,returns,breaks or the keywordthis within
recover blocks).

Since try blocks and thus alsorecover handlers
can be defined nestedly, a kind of propagation mecha-
nism has to be provided to ensure that exceptions thrown
with a throw-accept statement are processed/caught
by the appropriaterecover handler. This is done by
constructing ahandler stackwhich is implemented as

a linked list that represents the calling hierarchy of the
recover handlers during runtime. Every element of
this stack is a throwable object derived from the class
TryRecoverBlock 1 , that represents atry block with
at least onerecover handler attached to it. The objects
will be created, appended and removed from the stack
dynamically during runtime whenever an affectedtry
block will be entered or left.

2) Transformations in Detail:With the possibility of
local classes, Java offers an ideal facility to transform
recover blocks into real method calls and to construct
the handler stack. For everytry block possessing at least
one recover handler, the precompiler inserts the defi-
nition of a local classMyTryRecoverBlockNN (“NN”
in the class name is a unique integer number) directly
before the respectivetry block and basically copies the
original code of the body of therecover blocks into
the public methodraise() which is defined within this
local class.MyTryRecoverBlockNN itself extends the
superclassTryRecoverBlock. After the definition of
the inner class, an object of it,selfNN, is created. Here,
the “NN” in the object’s name is the same integer value
as in the corresponding local class’s name. (This labeling
is necessary to avoid naming conflicts when multiple local
classes are defined within the same scope/method.) The
selfNN–object represents the currently activetry block
environment together with all of itsrecover handlers
in therecover handler stack at runtime. On its creation
selfNN is pushed onto the stack. Therefore, the topmost
object of the stack always represents the current activetry
block and/or the current level ofrecover handlers. After
having processed thetry block,selfNN is removed from
the handler stack by calling its memberremove(). All
of these transformations are illustrated in figure 2.

Beside literally containing the original code of
recover blocks, the methodraise() has also another
major purpose: to ensure that theproper recover block
gets executed. Therefore a simple check is performed
whether the thrown exception is an instance of one of the
types that are defined by arecover block of this level
(try block). If so, the respective code (of therecover
block) is executed, if not, the methodraise() of the
preceding element on the handler stack gets called. This is
done by means of the membercaller which references
the preceding element.

To sum things up: At any given time, a call to the method
raise() of the top elementselfNN of the handler
stack will automatically find and execute the appropriate
recover block. In order to guarantee that the top element
is always accessible, the static membercurrent of
the classTryRecoverBlock always references this top
element. Thus, resumption can be achieved by calling —
and as the case may be returning from — the method

1In order to avoid accidental name clashes with user-defined names,
all class, method, and variable names introduced by the precompiler are
in reality prefixed with a prefix that is omitted here for the sake of
readability.

Fig. 2. Sketch of the basic transformation of atry-recover construct
by the precompiler.

current.raise(). In particular this means also that
every throw-accept statement can in principle be replaced
by current.raise().

But if ordinary termination is wanted, the precom-
piler has to make sure that execution continues, as with
normal Java termination, at the level of the responsible
handler. To achieve this, the precompiler adds to every
affectedtry block a newcatch handler for the type
TryRecoverBlock (which catches also all objects of
type MyTryRecoverBlockNN). TryRecoverBlock
itself extends the standard Java classError. Hence, all
objects of this class are throwable.
Additionally, the precompiler by default appends a
“throw this;” statement at the end of every trans-
formedrecover block’s body in the methodraise().
So, if a recover handler doesnot contain or ex-
ecute a resume statement, the corresponding object
selfNN of the classMyTryRecoverBlockNN, which
contains the instance–methodraise() that implements
this recover block, will automatically be thrown at
the end ofraise(). To ensure that it will be caught
and processed by the propercatch handler for type
TryRecoverBlock, a test is made in each of these
catch handlers, whether the thrown object equals the
objectselfNN, that was created to represent thetry to
which thiscatch handler is attached. If both are equal,
the methodraise(), in which the exception was thrown,
implemented arecover block of thistry. In particular,
this means that we are at the righttry block, after which
execution has to continue normally again. If the objects
are not equal, the methodraise() does not implement a
recover block of thistry block and thus the exception
has to be propagated to the precedingtry block.

3) Transformation of Variables and Realreturn
and/or throw Statements:An unacceptable drawback of
the use of local classes in Java is that only final variables
of the surrounding method can be accessed from within
the local class. This would mean for our implementation,
that local variables of the enclosing method would not be
accessible from withinrecover blocks, as they are from
within normalcatch blocks. In order to make non final
variables accessible, the precompiler creates for every non-
final variable analias variablewhich is a final Java array
containing a single element, the original variable itself.The
precompiler inserts the declaration of these alias variables
usually (except for alias variables of parameters) directly
after the declaration of the original variable. Once the
alias variable has been created, all accesses to the original
variable will be replaced by accesses to the respective alias
variable — of course, with respect to the scopes of the
variables. Alias variables themselves are accessible from
within local classes because they are final (arrays). But
they still can take different values, because in Java the
content of an array can be changed, even if the reference
to the array itself is final.

Due to the fact, thatrecover blocks are implemented
as methods, realreturn (and break), simple throw
statements (withoutaccept blocks) and originalthis
references have to be transformed when occurring within a
recover block, too. For example, if areturn (break)
statement would be left literally in arecover block, it
would end the implementing methodraise() instead of
ending the method which contains the definition of this
recover block, as the programmer originally intended it.
A similar situation arises when simplethrow statements
occur within recover blocks. Since the precompiler
transformsrecover blocks into methods, the respective
exceptions would be thrown from the wrong level (method)
and thus might be handled by incorrectcatch handlers
defined coincidently in a method betweenraise() and
the method which defines the intendedcatch handler.
Thus, in both cases, the precompiler has to transform
the original statements in order to achieve the originally
intended effect: By using the original EHM of Java one
gets to the proper “level” (of the process stack) first, before
being able to execute theoriginal return or throw
instruction from there.

V. CONCLUSION

This paper has described a conceptual model as well
as a practical implementation of a resumption mechanism
for Java. Even though the termination model seems to be
the single best option for a lot of language designers,
we do not accept to reject resumption completely, for
there are many scenarios where a resumption mechanism
provides a superior solution compared to the termination
model. In particular, since a resumption mechanism can be
implemented and realized rather easily in/for Java, it would
be desirable to include it as a regular part of the EHM of
a language.

Our approach has — compared to some resumption
mechanisms of earlier languages — the advantage, that
it allows to pass information from the handling context
back to the raising point. This design overcomes some
major problems of existing mechansims: Firstly, it allows
to determine several ways of how to resume depending
on the “solution” that has been chosen by the handler
(by specifying differentaccept blocks) and secondly,
it provides a way to inform the faulting method about
changes in the state of the raising context that have been
made by the handler. In that way our mechanism provides a
consequent and comprehensible way of resuming execution
at the raising point of an exception and hence resumption
ceases to be an error–prone form of continuing execution
in a possibly inconsistent state of the environment/system.
Another very interesting property of the proposed mecha-
nism is that it subsumes the functionality of the original
EHM of Java. This means in particular, that the existing
throw and catch constructs could be replaced by the
proposedthrow-accept andrecover-resume con-
structs without losing any expressive power of the termi-
nation mechanism. In fact, our implementation included
the “old” constructs only to stay compatible to existing
code. But for future usage, if termination is desired,
it can simply be achieved by not including aresume
statement into arecover block, which makes the original
constructs/mechanism of Java redundant.

REFERENCES

[1] B. Meyer,Object-Oriented Software Construction, 2nd ed. Prentice
Hall International, 1997, ISBN 0-13-629155-4.

[2] F. Cristian, “Exception Handling,” C.S. and Eng. Dep., University
of California, San Diego, Tech. Rep. RJ5724 (57703), 1987.

[3] S. Drew,et al., “Implementing Zero Overhead Exception Handling,”
Faculty of Information Technology, Queensland University of Tech-
nology, Australia, Tech. Rep. 95-12, 1995.

[4] B. Liskov, “A History of CLU,” ACM SIGPLAN Notices, vol. 28,
no. 3, pp. 133–147, 1993.

[5] B. Stroustrup, The C++ Programming Language, Special ed.
Addison-Wesley Publishing Company, 2000, ISBN 0-201-70073-5.

[6] B. Stroustrup and B. Foote, “Why not Resumable
Exceptions,” Interview Internet, 1996. [Online]. Available:
http://cpptips.hyperformix.com/cpptips/term\ except

[7] A. Koenig and B. Stroustrup, “Exception Handling for C++(re-
vised),” in USENIX C++ Conference Proceedings. San Francisco,
California: The USENIX Association, April 1990, pp. 149–176.

[8] R. Govindarajan, “Exception Handlers in Functional Programming
Languages,”Software Engineering, vol. 19, no. 8, pp. 826–834,
1993.

[9] A. T. Schreiner and B. K̈uhl, “Exceptions einmal anders
[Exceptions the other way round],”IX, vol. 11, p. 194, 1999.
[Online]. Available: http://www.heise.de/ix/artikel/1999/11/194/

[10] B. Meyer, Eiffel: The Language. London,UK: Prentice Hall
International, 1992, ISBN 0-13-247925-7.

[11] Paul Graham,ANSI Common Lisp, ser. Prentice Hall Series in A.I.
Prentice Hall, Inc, 1996, ISBN 0-13-370875-6.

[12] O. Lehrmann Madsen,et al., Object Oriented Programming in the
Beta Programming Language, ser. ACM Press Books. Addison-
Wesley Publishing Company, 1993, ISBN 0-201-62430-3.

[13] A. Gruler, “Flexible Exception Handling in Programming
Languages,” Master’s thesis, University of Ulm, Germany,
December 2004. [Online]. Available: http://www.alexander.gruler.
org/mastersthesis

[14] S. Viswanadha,et al., “JavaCC: JavaCC Home,” Internet, January
2005. [Online]. Available: https://javacc.dev.java.net/

