Exception Handling with Resumption:
Design and Implementation in Java

Alexander Gruler Christian Heinlein
Dept. of Computer Structures, University of Ulm Dept. of Computer Structures, University of Ulm
89069 Ulm, Germany 89069 Ulm, Germany

ABSTRACH-Nowadays, nearly every mainstram programianguages can be extended by the ability to resume ex-
ming language includes an exception handling mechanism. B&eution after completion of the respective handler, at the
sically, the variety of these mechanisms can be devided in %Bint where the exception has been raised. Beforehand

groups according to their handling models: Mechanisms whi th ind f thi fi defi ¢ inol
support exception termination and those which support resurﬂB- e remainaer of this section, we define a terminology

tion. Even though resumption was still an attractive alternativand recall the advantages and disadvantages of resumption.
to termination for the first exception handling mechanisms in tha section Il we will have a look at existing EHMs

1980s, it has nearly been displaced completely in contemporapat support resumption. In section I, we will clarify
languages by termination. Some reasons for this trend will %me general, conceptual issues concerning the design of

reviewed in this work. But in our opinion, they do not justi .
to reject resumption completely. To the contrary, resumption c EHM that supports resumption: How should such a

simplify some tasks extremely while still being implementable withechanism in general be designed to provide a safe and
reasonable effort. To show this, we discuss some basic concéfs the programmer) comprehensible way of dealing with

of how a resumption mechanism should be designed in geneifteptions and to overcome the disadvantages of former
and propose new syntactical constructs to support these conce%tﬂMs Of course, these resulting concepts are applica-

Based on these concepts, we describe the implementation Iat fi hani ie ind dent of
prototypical precompiler for Java supporting exception handlin € 10 any resumption mechanism, 1.€. independent of a

with resumption. In fact, the mechanism implemented in tR@ecific programming language. Based on these general
precompiler not only extends, but completely subsumes the Jaeancepts, we describe in section IV the construction of
mechanism, for it is capable of both, termination and resumptiog. precompiler for Java that extends the existing EHM of
the language. We have deliberately chosen Java as the
KEYWORDS—Flexible Exception Handling, Java, Re- “target language” for the precompiler for several reasons:
sumption, Prototypical Implementation, Precompiler. First and foremost, Java already offers a sophisticated
EHM that provides a solid basis to build onto. Also, some
lingustic properties of Java have turned out to be very
ITHIN the last two decades of software evolusuitable for the implementation in that they allow to keep
tion, offering an exception handling mechanisrit on a very high level of the language, i.e. to avoid
(EHM) has become a key feature in modern programmimigscending into the very fundamental mechanisms of a
language design. Almost all modern EHMs of variousompiler (e.g. changing the program counter, stack pqinter
programming languages separate the “normal” code okt. explicitly). Furthermore, Java is a very popular, niade
program from its error—handling code in order to meet th@nguage which guarantees that the concepts will reach a
increasing modularity demands of programs and to proviigge variety of people. Section V concludes the paper.
a comfortable way of dealing with errors. However, this)
separation necessitates to think about the control flow of\a Terminology
program in connection with an EHM. For the sake of clarity, this section briefly introduces
At present, in most mainstream languages such as Javeéerminology that will be used throughout this work.
or C++, the common way of directing the control flowA system that executes programs has to be able to deal
after a responsible exception handler has been found avith unexpected events that only occur during runtime
executed, istermination i.e. not returning to the point and that are usually not predictable at compile time. Such
where the exception has occurred and resuming the pa®r unexpected event or abnormal condition is commonly
gram’s execution from there, but instead unwinding theferred to as aexception Systems that support signalling,
(process) stack and continuing execution at the level of thandling and detection of exceptions are said to progide
respective handler. We agree with B. Meyer, the designeraafption handling EH). Theexception handling mechanism
Eiffel, that the only reasonable alternative to terminati® (EHM) of a system determines how exceptions affect the
resumptiorwith the motivation to “cure” the error that hascontrol flow of a program.
caused the exception and to continue/resume the originaburing the execution of a program the system is always
execution afterwards [1]. in one of two statesaormal activityor exceptional activity
This work describes, how the EHM of Java and othd@he occurence of an exception makes a system change
T Author's new address: Chair IV, Software & Systems Engimegri from normal to exceptional activity. This means, that
Technical University of Munich, 85748 Garching, Germany the standard continuatiorof the program is replaced by

. INTRODUCTION

an exceptional continuatior2], i.e., the program will changed the context of the faulting block/procedure. So,
continue differently after an exception has occurred. after the completion of the handler, essential conditions
An exception is caused either by an error or by argyr assumptions about the state of the environment at the
other event that occurs during the normal execution ofraising point might now be different compared to how
program, preventing the program from following its normahey were before the execution of the responsible handler.
execution pati3] and leading it into arexceptional state Therefore, he points out that, with resumptitmaising an
The method (procedure, routine) or the block of code gxception ceases to be a reliable way of escaping from a
which the exception occurs is referred to as faslting context” [7]. In general, he doubts conditional resumption
methodor thefaulting block and suggests to simulate it by a function call instead, for
The specification of grotected regiorallows to define in his opinion, resumption is only a “[.npn-obvious, and
handlers for a certain block of statements.hAndleris error-prone form of co-routines7].
the place where control is transferred to, after an exceptio Certainly, the reasons given by Stroustrup are not wrong
has been raised. Since a handler usually constitues a scpd we agree with him to the extent, that the nature of
and/or a block of its own, we also speak of thandling resuming exception handlers is very similar to the one
context Usually different handlers can be specified (faof function calls. Actually, the implementation proposed
the same protected region) to react on different kinds iof section IV makes use of this property by internally
exceptions. Thehandling modelof an EHM determines transforming resuming handlers into local methods. But as
how/where to continue after the completion of the respondiwill also turn out in section IV, this does not do the job
ble handler. In a handling model that supports resumptiarompletely: Assuming that we would mimick resumption
we call a handler that continues (or that might continug)ith methods only, what should the mimicking method do
execution at the raising contextrasuming handler for example, if it cannot cure the cause for the exception?
The signalling of an exception is callegising or throw- In this case, usual termination (i.e., unwinding the stagk)
ing. The place where an exception is raised will be referr@dhat is actually wanted. In such a situation it would make
to as theraising point The current environment (block,no sense at all to resume, which means for the method to
method) containing the raising point is called ttaésing return. This is only one example why a language should
context After an exception has been raised, it is propagatedpport resumption with built-in, linguistic facilitiesnd
(automatically or explicitly) through the handler hiefayc not leave the whole job to the programmer.
until an appropriate handler is found. The problem, that a handler might change the environment
of the raising point, can also be solved, if we allow a
resuming handler to “return” some information back to
Since the first EHMs have been included in languag#®e raising point and in that way to “inform” the raising
like CLU [4] or PL/I in the mid 1970s , language designersontext about the changes made during its execution. This
have increasingly tended to offer termination solely. Re& analogous to a signalling statement which also transport
sons for that are often given as: the utility of resumptianformation in form of the thrown exception (object).
does not justify its “cost,” or resumption makes the contrd¥ith these and similar minor changes, the only point of
flow of a program too difficult to understand and thereforeriticism that remains, is that resumption is rarely used
more error-prone. The developers of CLU (which waand therefore the effort to implement it is always too high.
beside PL/I the first language that included an EHMut in our opinion, this reason alone does not justify to
rejected resumption’because it was complex and alsareject resumption completely, in particular if the effort
because wéthe developers of CLUbelieved that most of of implementing such a mechanism remains moderate,
the time, termination was what was wanted. Furthermoras we will see in section IV. Besides, there are indeed
if resumption were wanted, it could be simulated by passingany realistic situations where the use of a resumption
a procedure as an argument .[4]. mechanism can simplify things significantly. E.g., while
Actually, Bjarne Stroustrup presented similar reasons whnp OutOfMemory Error is nearly always treated as final
he has chosen termination as the only handling model fomd not curable, it could be solved in certain scenarios by
C++ [5]. Firstly, he based his decision on the experience ffeeeing data structures (in a handler) which were kept in
ports of several language designers which have been ugimg memory only for performance reasons, and resuming
EHMs for a long time, while constructing and/or workingexecution at the raising context afterwards.
with languages like for example Cedar and Mesa. SomeAxiiother example is the processing performed by a parser:
these designers even were early proponents of resumptiDuaring the syntactic analysis a parser reads and analyses
but have obviously changed their minds, because duritigg grammatical structure of a given input, with respect to
the years, the use of resumption in their systems decreaaagiven grammar. If the input does not obey this grammar,
gradually and has always been replaced Yay more it signals an error, usually by raising a kind of “Parse
appropriate design”[6]. Stroustrup presents some otheException”. Therefore, with an EHM based on termination,
reasons to reject resumption in [7]: The fact, that a patvery simple parser can be constructed by simply raising
of a program might gain control back due to resumptioan exception on encountering a grammatical error in the
is a problem to the extent, that the handler might haugput. Of course, such a parser is not capable of detecting

B. Arguing about Resumption

more than one error in the input in a single run for the EHMlan be signalled by many different operators. One of
always terminates after the first error. But nearly evetfiem is thecheck-type macro, that allows to signal
contemporary parser is able to detect and to report multigleorrectable error[11]. This means, that the handler for
errors in the input file in a single run over the input. Sude condition enables the user to provide a corrected value.
a parser usually uses a special technique: On encounterinBETA [12] offers a more complete resumption mech-
an error in the input it tries to “repair” the error byanism based on its pattern mechanism which replaces
guessing an alternative to the currently parsed (erroneotypes, classes, functions, and also exceptions. In péatjcu
token and adjusting the input accordingly. Hoping that thevirtual pattern dealing with an exception is called an
guess was right, the remaining input can then be parsegception [12]. Exceptions can be associated with class or
This technique could be implemented very comfortablyrocedure patterns. The default action for an occurence
using a resumption-mechanism: On encountering an ermfr,an exception Excepti on pattern) is the termina-
the parser simply throws a corresponding exception. Ttien of the whole program, but this may be avoided by
responsible handler adjusts the input according to thesguegplicitly specifying Cont i nue within the description
and resumes afterwards. The parser can now proceedft@n exception pattern. Resumption (also called “partial
check the remaining input for errors. recovery”) can be achieved by definitapels and restart
the execution at such labels from within a handler by means
of arestart operator. However, BETA does not allow
Of course, resumption is not a new concept for @ pass information along with aest art (which is a
handling model and, as seen in the last section, sino@jor conceptual disadvantage; see section IIl).
the introduction of the first EHM in languages in the
mid 1970s, language developers have been arguing and I1l. CONCEPTUAL DESIGN
thinking about resumption. Resumption was already of-Most of the points of criticism, that were presented so
fered by earlier languages like e.g. PL/I, Mesa, BETA, arfdr, can be avoided by designing the resumption mechanism
Lore, but “newer” implementations of a resumption mectappropriately. Therefore, we discuss in this section some
anism are rarely found: R. Govindarajan presented a wat&sign issues of a resumption mechansim. As a result, we
about EH in functional programming languages [8], whegpropose a general syntax, that overcomes the points of
he clearly separates between termination and resumptigiticism as well as some disadvantages of other EHMs
mechanisms. Schreiner (et al.) describes how resumpt&upporting resumption.
can be simulated in regular Java [9]. His article is the basis
of our implementation, but as we will see in section IV, ift- Ther esune Statement
is by no means sufficient for a complete implementation The first question that arises, is how or, in particular,
of a resumption mechanism for a programming languagehereto indicate resumption. Basically, there are only two
But beside this, for popular, contemporary langaguesethg@ossibilities: Firstly, the decision whether to resume air n
is no known implementation of a resumption mechanisman be made at the raising point, i.e. by the raise statement
in particular not for Java and C++. itself. This implies that a language would have to offer two
The EHM offered by Eiffel [10] actually does notdifferent raise statements: one for the termination model
provide resumption, but only a retry mechanism, which &nd another one for resumption, i.e. where the handler
a combination of resumption and termination, even thoughlways “returns” and resumes execution at the raising
strictly speakingyetry is only a special form of termina- point. The main advantage of this possibility is, that there
tion. The fundamental difference between resumption aisdno doubt about the continuation of the control flow.
retry is, that a retry mechanism unwinds the process stdokparticular, it is already known in the raising context,
exactly like with termination and re-executes the wholehether a handler will resume or not.
faulting procedure a second time instead of continuirBut is this feasible? Usually only after having tried to cure
execution directly after the raise statement, as resumptihe cause of an exception, we can say, whether the attempt
does. Thus, in Eiffel, a handler can be attached towas successful or not. Therefore, only the handler of an
whole routine by adding aescue clause to the routine’s exception can decide, whether it could cure the cause for
definition which may contain aet ry statement which an exception or not. And, as already emphasized in section
causes the system to unwind the stack and to re-exeduyt¢his knowledge is essential, because resumption only
the whole routine a second time. makes sense with the motivation to cure the cause for the
A signalling constructt(hr ow- accept) is also offered exception before resuming normal execution. Therefore,
in the Lisp [11] language family. But here, itis not intendedie suggest, that the respective handler should indicate,
for EH, but to provide a more drastic form of @t ur n to whether to terminate or to resume.
exit from a block and transfer control back through severahis indication is best done by means of a neasumne
function calls. However, it does not offer resumption. statement which might optionally appear within a handler.
More interestingly is theondi t i on mechanism of Lisp, Consequently, the missing of such a statement (or the fact
for it offers a rudimentary kind of resumption. Conditionsghat it is not executed at runtime) indicates termination. A
in Lisp are what exceptions are in other languages. Thegsune in a handler is similar to aet ur n in a function:

II. RELATED WORK

Both end the execution of the respective environment. Like executed? This is exactly the point, wherertksune
areturn in a function, ar esurme can basically occur statement anciccept blocks fit together: The type of
everywhere in a handler, i.e. not only at the end. the object returned by theesune statement determines

The motivation behind resumption was, that the cauiee accept block that will be executed, in the same way
for an exception has to be fixed by the responsible handias, the type of the object thrown bytahr ow statement
before the program can continue normally. Therefore,datermines thecat ch block that will be executed. So,
resuming handler usually has to perform some changtpending on what kind of solution the handler has per-
in the state of the system. But the raising context édrmed to cure the cause for the exception, it sets the
the respective exception still assumes the old state paframeter of the esune statement appropriately to tell
the system, as it was at the time when the exceptitire raising context which changes it has made.
has been thrown. This means, that a resuming hande, in a resumption mechanism, we basically need two
needs a facility to inform the handling context about th&ymmetric facilities: Firstly (as with termination), a sai
changes that were made. From another point of view: tlsgatement together with respective handlers for sigrllin
information itself can contain and/or could be seen as tha exception (in the direction from the raising point to the
solutionfor the cause of the exception. handler) and secondly,rasune statement in combination
Passing information from the handling context back twith one or moreaccept blocks (for sending the solution
the raising point is best done by allowing thesune back from a resuming handler to the raising context.).
statement to have a “parameter” analogous to the parametdfigure 1 shows a small example (using a Java-like
of at hr owstatement in Java. Thus thesune statement syntax): Methoda() calls methodb() within a protected
has the following form, whereexpr essi on> denotes region ¢ ry block), which has, beside another handler,
the “parameter” which is evaluated and passed back to thehandler for an exception of typExcepti on2. The
raising context: handler contains a esune statement that “resumes”
<resume_stmt> ::= "resume" <expression> ":" (returns) an ob_jes:t of the user-defined tyﬁel ution.

Somewhere within method() an exception of type

In languages where exceptions are represented as objggisept i on2 will be thrown and consequently be caught
it is sufficient for ther esume statement to have a singlén the respective handler in methad) . In this scenario,
paramter, for the parameter itself can be an object ofttge variableer r or _i s_cur abl e evaluates td r ue and
certain type (and have multiple fields). As we shall saRerefore the handler resumes and returns an object of type
in section 1lI-B, such a parameter can be accessed in 8! ut i on. Thus, execution continues with tlae cept
raising context. block for the typeSol ution in methodb(). When
the end of theaccept block has been reached, the
system continues normally with the first statement follow-

We recall that one point of criticism against a resumptigAg thet hr ow accept construct, i.e. following théast
mechanism was, that the state of the handling conteidcept block.

might have been changed during the execution of the re-
spective handler. Therefore, after the handler has resunm@epl i ¢ void a() {
the code following the raise statement cannot assume that t'Y { ()

B. accept Blocks

. . . catch (Exceptionl el) { }
the sfcate_of the environment (states of ob_Jects, vanz_ibles, catch (Exception2 e2) {
etc.) is still the same as b_efore the.excepnon was raised. /* Try to cure the cause. */
Therefore, the code following the raise statement has to be if (error_is_curable)
able to deal with different situations, depending on what resume new Sol ution("the solution");

changes the respective handler has made before resuming. ! se { /=0 ean up and proceeds

The design of the EHM should support the programmer to *as with termnation.«/ } }
deal with these different situations. For this purpose, VRblic void b () throws Exception2 {
introduce so-callediccept blocks which can be attached

to at hr ow statement like e.gcat ch handlersto @ry throw new Exception2(” Caused by error™)
block in Java. In particular, the specification ofancept accept (Solution s1) {
block also contains the declaration of a variable of a certai accept ngt herSolution s2) { }
type. An EBNF definition of the syntax is shown below:
<throw_stm> ::= "throw" <expression> Fig. 1. A simple resumption scenario demonstrating the newagynt
(";" | (<accept_bl ock>)~*)
<accept _bl ock> ::= "accept"
"(" <type> <identifier> ")" IV. | MPLEMENTATION

{" <plock> "} This section presents arototypical implementation of

So, everyaccept block contains instructions to deala resumption mechanism for Java, i.e. an implemenation
with a single kind of situation in the raising context. Butthat does not aim to be optimized in terms of performance
how does the EHM determine whiettcept block has to or reduced EH overhead [3]. However, it shows that a

resumption mechanism is rather easily and at the same ticogle, that uses the regular EHM of Java!

affordably to construct. Since a complete description ef ti'herefore, the olccat ch block remains the handler for
implementation is far beyond the scope of this paper, werminating exceptions only. For terminatiagd/orresum-

can only outline the basic ideas and principles — howevang exceptions, we introduce a new construct.eaover

a complete description of the implementation is given inlock/handler. Depending on whetherr@cover block
[13]. In order to demonstrate the concepts proposed dantains and excutes aesune statement or not, it
section Ill, we have decided to integrate the resumpti@ontinues with resumption or termination, respectively.
mechanism into regular Java by constructing a preco®yntactically, ar ecover handler looks exactly like a
piler that transforms the new constructs necessary for gt@respondingcat ch handler in Java, except for the
resumption functionality into regular Java constructse Thkeywordr ecover . However, the handlers are completely
result of this transformation can be compiled and executediependent: Acat ch block handles only terminating

by every Java Virtual Machine (JVM). exceptions, i.e. exceptions that were thrown by a simple
In particular, we wanted to provide an implementationhr ow statement, while a ecover block only handles
that is 100% compatible to existing Java code whiclexceptions thrown by & hr ow- accept statement. In
does not know anything about a resumption mechanigrarticular, acat ch and ar ecover handler for the same
and only uses the regular EHM of Java. The price foype donot interfere with each other.

this downward—compatibility were some changes to the ,

conceptual design which will be described in sect. Iv-AB- Code Transformation

The implementation itself was done at a “high level” of The precompiler itself can be constructed quite easily
the language, i.e. only the existing EHM of Java and somdth JavaCC [14]. Actually, the bigger challenge is how
other language constructs are used. So we rely exclusiviytransform the new statements for resumption into cor-
on what is offered by standard Java — in particular, thiespondingregular Java code. This section presents these
implementation does not set the program counter or ttiensformations and the resulting output of the precompile
stack pointer explicitly, nor is it necessary to dig deeply 1) Basic Ideas:In a paper on EH in C++ [7], B.
into the runtime environment of the system itself by meai®roustrup suggests that resumption could be achieved
of the Java Debugger Interface (JDI) or anything alikéhrough ordinary function calls. Schreiner has concretize
Considering the implementation effort, the fact that thhis idea in another article on exceptions [9] and proposes
implemenation can be done at a high level disproves espebasic skeleton of how this can be achieved in Java. The
cially the point of criticism that implementing a resumptio implementation described here largely bases on his ideas.

mechanism has to be very expensive. So, in order to implement a resumption mechanism
] without actually setting the stack pointer excplicitly (as
A. Necessary Adjustments to the Syntax with got o constructs or theet j np/l ongj np facility of

According to the conceptual design of the resumptid@++), we have to simulate the part of exceptional activity
mechanism, it wasot necessary to have different kinds ofn which the user might possibly resume, with method
handlers for termination and resumption, respectivelyt Bealls. Since, in this implementation, ontyecover han-
in order to be compatible to existing Java code, we hadéers can possibly resume, every control transfer to a
to introduce a new kind of handler, theecover block. recover handler has to be transformed by the precom-
Imagine the situation, where for example a methdd piler into a method call. Hence, to achieve resumption, a
includes a protected region with resuminghandler for r esune statement in & ecover handler can be directly
exceptions of type T. Within this protected region, methadapped into ar et ur n statement of the implementing
x() calls another metho() , which was developed prior method. If ther ecover handler does not contain or does
to the introduction of the resumption mechanism (e.g.r®t execute a esune statement, we use the original EHM
library routine). This method/() knows nothing about of Java to unwind the process stack by throwing a (real)
a resumption mechanism, but nevertheless could use éxeeption and catching it at the appropriate place {(the
regular EHM of Java. Ify() now coincidentally throws block defining the originar ecover handler) and thus
a regular (terminating) exception of type the attached achieve/simulate termination. Normaht ch handlers are
handler forT in methodx() would be responsible andnot touched by the precompiler and therefore will work in
would handle this exception. But as soon as the handike usual manner. Actually, all original constructs for EHM
tries to resume, the system would crash, because the EdMlava will not be transformed at all (except for original
tries to resume execution at the raising point, which ishr ows, r et ur ns, br eaks or the keyword hi s within
the methody (). But methody() certainly never was r ecover blocks).
designed to deal with a resumption, i.e. it only includes Since t ry blocks and thus also ecover handlers
a regulart hr ow statement without angccept blocks. can be defined nestedly, a kind of propagation mecha-
To avoid such errors with existing code, an implementatiorism has to be provided to ensure that exceptions thrown
has to provide separate handlers for the resumption andwhith a t hr ow- accept statement are processed/caught
termination model respectively. We emphasize again, thst the appropriater ecover handler. This is done by
this is only necessary to stay compatible with existing Jaganstructing ahandler stackwhich is implemented as

a linked list that represents the calling hierarchy of thepublic void m() public void m()
recover handlers during runtime. Every element of local class

this stack is a throwable object derived from the class extinds TryRecovesBlock
TryRecover Bl ock !, that representstar y block with

at least ong ecover handler attached to it. The objects
will be created, appended and removed from the stac

dynamically during runtime whenever an affectedy X I 22 ropies

block will be entered or left.
2) Transformations in Detail:With the possibility of 4724//},,,@4 l,‘»x" new MyTryRecoverBlock();

local classes, Java offers an ideal facility to transform

recover blocks into real method calls and to construct fé}“/e//h“{l”{ I 1 try block

the handler stack. For evety y block possessing at least é\}wd\ﬂ | = S —
KRN

try block

onerecover handler, the precompiler inserts the defi-

nition of a local classw Tr yRecover Bl ockNN (*NN’
in the class name is a unique integer number) directly *N \it\K}g,Qhr \4
before the respectiver y block and basically copies the

original code of the body of the ecover blocks into selfNN.remove () ;
the public method ai se() which is defined within this
local class.MyTr yRecover Bl ockNN itself extends the Original Input > Transformed Code
superclassit yRecover Bl ock. After the definition of
the inner class, an object of gel f NN, is created. Here, Fig. 2. Sketch (_Jf the basic transformation dfray- r ecover construct
NNy .5 . . by the precompiler.
the “NN' in the object’'s name is the same integer valug
as in the corresponding local class’s hame. (This labeling
is necessary to avoid naming conflicts when multiple local
classes are defined within the same scope/method.) T rent. rai se(). In particular this means also that
sel f NN-object represents the currently activey block €very throw-accept statement can in principle be replaced
environment together with all of itsecover handlers by current.raise().
in ther ecover handler stack at runtime. On its creation But if ordinary termination is wanted, the precom-
sel f NN is pushed onto the stack. Therefore, the topmasiter has to make sure that execution continues, as with
object of the stack always represents the current actiye normal Java termination, at the level of the responsible
block and/or the current level ofecover handlers. After handler. To achieve this, the precompiler adds to every
having processed tha y block,sel f NNis removed from affectedt ry block a newcat ch handler for the type
the handler stack by calling its membeenove(). All TryRecover Bl ock (which catches also all objects of
of these transformations are illustrated in figure 2. type MyTryRecover Bl ockNN). TryRecover Bl ock
Beside literally containing the original code oftself extends the standard Java cl&s or . Hence, all
recover blocks, the method ai se() has also another objects of this class are throwable.
major purpose: to ensure that theoperr ecover block Additionally, the precompiler by default appends a
gets executed. Therefore a simple check is performédhrow this;” statement at the end of every trans-
whether the thrown exception is an instance of one of tfeymedr ecover block’s body in the methodai se() .
types that are defined byreecover block of this level So, if a recover handler doesnot contain or ex-
(t ry block). If so, the respective code (of thecover ecute aresume statement, the corresponding object
block) is executed, if not, the methadai se() of the selfNN of the classMyTr yRecover Bl ockNN, which
preceding element on the handler stack gets called. This@tains the instance-methoai se() that implements
done by means of the membeal | er which references this recover block, will automatically be thrown at
the preceding element. the end ofrai se(). To ensure that it will be caught
To sum things up: At any given time, a call to the metho@nd processed by the propeat ch handler for type
rai se() of the top elementsel f NN of the handler TryRecover Bl ock, a test is made in each of these
stack will automatically find and execute the appropriat@t ch handlers, whether the thrown object equals the
recover block. In order to guarantee that the top elemefbjectsel f NN, that was created to represent they to
is always accessible, the static membmurrent of which thiscat ch handler is attached. If both are equal,
the classTr yRecover Bl ock always references this topthe method ai se() , in which the exception was thrown,
element. Thus, resumption can be achieved by calling implemented a ecover block of thist ry. In particular,
and as the case may be returning from — the meth8tis means that we are at the righty block, after which
execution has to continue normally again. If the objects
B e eea o oy 31 1Ot equal, the methachi se() does not mplement a
’ ! recover block of thist ry block and thus the exception

in reality prefixed with a prefix that is omitted here for the esaif
readability. has to be propagated to the preceding/ block.

3) Transformation of Variables and Realet urn Our approach has — compared to some resumption
and/ort hr ow Statements/An unacceptable drawback ofmechanisms of earlier languages — the advantage, that
the use of local classes in Java is that only final variabliesallows to pass information from the handling context
of the surrounding method can be accessed from withhack to the raising point. This design overcomes some
the local class. This would mean for our implementatiomajor problems of existing mechansims: Firstly, it allows
that local variables of the enclosing method would not lte determine several ways of how to resume depending
accessible from withim ecover blocks, as they are fromon the “solution” that has been chosen by the handler
within normalcat ch blocks. In order to make non final(by specifying differentaccept blocks) and secondly,
variables accessible, the precompiler creates for evamy nd provides a way to inform the faulting method about
final variable analias variablewhich is a final Java array changes in the state of the raising context that have been
containing a single element, the original variable itsEife made by the handler. In that way our mechanism provides a
precompiler inserts the declaration of these alias vambtonsequent and comprehensible way of resuming execution
usually (except for alias variables of parameters) diyectht the raising point of an exception and hence resumption
after the declaration of the original variable. Once theeases to be an error—prone form of continuing execution
alias variable has been created, all accesses to the drigina possibly inconsistent state of the environment/system
variable will be replaced by accesses to the respective allnother very interesting property of the proposed mecha-
variable — of course, with respect to the scopes of timsm is that it subsumes the functionality of the original
variables. Alias variables themselves are accessible fr&@HM of Java. This means in particular, that the existing
within local classes because they are final (arrays). Buir ow and cat ch constructs could be replaced by the
they still can take different values, because in Java thpoposed hr ow accept andrecover -resune con-
content of an array can be changed, even if the referemtricts without losing any expressive power of the termi-
to the array itself is final. nation mechanism. In fact, our implementation included

Due to the fact, that ecover blocks are implementedthe “old” constructs only to stay compatible to existing
as methods, realet urn (and br eak), simplet hr ow code. But for future usage, if termination is desired,
statements (withouticcept blocks) and originalt hi s it can simply be achieved by not including reesumne
references have to be transformed when occurring withirs@tement into aecover block, which makes the original
recover block, too. For example, if aet ur n (br eak) constructs/mechanism of Java redundant.
statement would be left literally in aecover block, it
would end the implementing methadii se() instead of
ending the method which contains the definition of thigl] B. Meyer,Object-Oriented Software Constructia?nd ed. Prentice

REFERENCES

. . . Hall International, 1997, ISBN 0-13-629155-4.
recover block, as the programmer originally intended it.[»
A similar situation arises when simptehr ow statements
occur within r ecover blocks. Since the precompiler [3]
transformsr ecover blocks into methods, the respective
exceptions would be thrown from the wrong level (method)4)
and thus might be handled by incorrezat ch handlers
defined coincidently in a method betweeni se() and
the method which defines the intendedt ch handler. [g]
Thus, in both cases, the precompiler has to transform
the original statements in order to achieve the originall¥7]
intended effect: By using the original EHM of Java one
gets to the proper “level” (of the process stack) first, befor
being able to execute theriginal return or t hr ow
instruction from there.
9
V. CONCLUSION .
This paper has described a conceptual model as wedj
as a practical implementation of a resumption mechanism
for Java. Even though the termination model seems to
the single best option for a lot of language designens?]
we do not accept to reject resumption completely, for
there are many scenarios where a resumption mechanf
provides a superior solution compared to the termination
model. In particular, since a resumption mechanism can be
implemented and realized rather easily in/for Java, it @o 41
be desirable to include it as a regular part of the EHM of
a language.

§§P A. Gruler,

] F. Cristian, “Exception Handling,” C.S. and Eng. Depnilkrsity

of California, San Diego, Tech. Rep. RJ5724 (57703), 1987.

S. Drew,et al, “Implementing Zero Overhead Exception Handling,”
Faculty of Information Technology, Queensland Universityrech-
nology, Australia, Tech. Rep. 95-12, 1995.

B. Liskov, “A History of CLU,” ACM SIGPLAN Noticesvol. 28,
no. 3, pp. 133-147, 1993.

] B. Stroustrup, The C++ Programming LanguageSpecial ed.

Addison-Wesley Publishing Company, 2000, ISBN 0-201-70873-
B. Stroustrup and B. Foote, “Why not Resumable
Exceptions,” Interview Internet, 1996. [Online]. Availab
http://cpptips.hyperformix.com/cpptips/teknexcept

A. Koenig and B. Stroustrup, “Exception Handling for C«te-
vised),” in USENIX C++ Conference ProceedingsSan Francisco,
California: The USENIX Association, April 1990, pp. 149-6L7

8] R. Govindarajan, “Exception Handlers in Functional ghamming

Languages,”Software Engineeringvol. 19, no. 8, pp. 826-834,
1993.

A. T. Schreiner and B. Khl, “Exceptions einmal anders
[Exceptions the other way round]!X, vol. 11, p. 194, 1999.
[Online]. Available: http://www.heise.de/ix/artikeB99/11/194/

B. Meyer, Eiffel: The Language London,UK: Prentice Hall
International, 1992, ISBN 0-13-247925-7.

Paul GrahamANSI Common Lispser. Prentice Hall Series in A.l.
Prentice Hall, Inc, 1996, ISBN 0-13-370875-6.

0. Lehrmann Madseret al, Object Oriented Programming in the
Beta Programming Languageser. ACM Press Books. Addison-
Wesley Publishing Company, 1993, ISBN 0-201-62430-3.
“Flexible Exception Handling in Programming
Languages,” Master's thesis, University of Ulm, Germany,
December 2004. [Online]. Available: http://www.alexandeuler.
org/mastersthesis

S. Viswanadhaet al,, “JavaCC: JavaCC Home,” Internet, January
2005. [Online]. Available: https://javacc.dev.java/net

