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ABSTRACT

Virtual namespace functions (VNFs) are introduced as C++ func-
tions deifned at global or namespace scope which can beimedef
similar to virtual member functions. Exn though this is a rela-
tively simple concept, hardly more compléhan ordinary C func-
tions, it is shavn that VNFs subsume object-oriented single, mul-

tik.uni-ulm.de

add ne&v subclasses to a system whose operations are implemented
as such functions.

Given these complementary amivtages and disadntages of
namespace and virtual member functions, it seesmspromising
to provide virtual namespace functiof®NFs, cf. Sec. 2) which
combine the adntages of namespace and virtual functions:

tiple, and predicate-based method dispatch as well as aspects Because thewill be deined at (global or) namespace scope, it

oriented before, afteand around advice. Their implementation by
means of a “lazy” precompiler for C++ is briefly described.

1. INTRODUCTION

C++ provides both ordinary functions (deéd at global or name-
space scope, é., outside an class) and member functions be-
longing to a particular class [13]The latter might be digfed
virtual to support dynamic binding and object-oriented pro-
gramming, while the former arevadys bound statically

A sevae limitation of (virtual) member functions (that is also
present in other object-oriented languages where member func
tions are usually called methods) is thetfthat thg must be de-
clared in the class tiiebelong to, and it is impossible to declare
additional ones “latéri. e, in a diferent place of a program. This
leads to the well-knen “expression problem” [14], €., the &ct
that it is easy to add we(sub)classes to arxisting system, it
very hard to add ne operations to these classes imadular
way, i.e, without touching or recompilingxisting source code.
The Msitor Pattern [5] has been ddoped as a wrkaround to this
problem, lot its application is rather complicated and must be
planned in adance, ie., it does not help to cope witinanticipat-
ed softwae evolution

On the other hand, ordinary functions, which will be called
namespace functioria the sequel since there defned at (glo-

bal or) namespace scope, can be added to a system in a complet

ly modular vay at ag time without ag problems. Havever, they
suffer from the &ct that thg are alvays bound statically (.,
they cannot be werridden or redefed), which maks it hard to

! Friend functions défed in a class are considered ordinary func-
tions for the purpose of this distinction.
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will always be possible to add weé/NFs to an gisting system
without needing to touch or recompileigting source code.

« Because thewill be bound dynamicallyit will always be pos-
sible to redefe them later if ne subclasses he been added to
a y/stem, agin without needing to touch or recompibdsting
source code.

In particular the epression problem can be seti/in a ery sim-

ple and straightforard way (much simpler as suggested, for in-
stance, by [14], where generics are used as a technical trick to
solve a poblem that is not inherently generic), and ated dis-
patch stratgies such as multiple or predicate dispatch [3] happen
to become special cases of VNFs (cf. Sec. 3).

Furthermore, the particular kind of dynamic binding that will be
employed will also allev the flexible extension and/or modifa-
tion of existing VNF defnitions in a manner similar tadvicein
AspectC++ [12]. © capture the other essential dimension of
aspect-oriented programminggi, quantifcation, VNF patterns
are previded as a means to a@miently defne families of similaf
ly structured VNFs (cf. Sec. 4).

Virtual namespace functions are implemented by a “lazy” pre-
compiler for C++, ie., a precompiler that does not perform a
complete parse or semantic analysis of its input,dnly recog-
nizes particular &ywords of interest, analyzes their coxteand

erforms appropriate local source code transformations (cf.

ec. 5).

Since the concept of VNFs is similar tosaml other approach-
es found in the literature, a discussion of relatedkwis gven a
the end of the paper (cf. Sec. 6).

Even though VNFs are presented in this paper asc@mson to

the C++ programming language (and C++ terminology is used),
the underlying concept is actually language-independent and
might be incorporated into wnmperatve (. e., procedural or ob-
ject-oriented) language. Iradt, the same idea has also been im-
plemented aslynamic class methods Java [7] and asdynamic
proceduesin Oberon(-2) [6].



2. VIRTUAL NAMESPACE FUNCTIONS
2.1 Concept

A virtual namespace function (VNF) is an ordinary function de-
fined at (global or) namespace scope whositieh is preceded
by the leyword virtual ~ (whose application is restricted to mem-
ber functions in original C++). In contrast to normal functions
which adhere to thene dehition rule (ODR) [13], i.e., a pro-
gram must not contain more than oneirdébn of the same func-
tion (except if it is an inline or template function, in which case
the deinitions in all translation units must be identical), a VNF
might be deéhed multiple times with diérent function bodies in
the same or diérent translation units. In such a casesng new
definition (also called drand of the VNF) completely werrides
the preious defnition, so that calls to the function will be redi-
rected to the e definition as soon as it has beactivatedduring
the prograns initialization phase (see Sec. 2.2 for a precise def
nition of activatior). However, every branch of a VNF is able to
call the preious branch of the same VNF by using tlegvikord
vitual  as the name of a parameless pseudo function @., an
object preiding a deihition of operator()() ) that calls the pre-
vious branch with the samegaments as the current branchiete
if the formal parameters ta been modied before callingiir-
tual ). The type of the function objeegirtual  is a subtype of
the preddhed typevirtual<R>  (i. e., virtual is treated as a
template nampeif R is the result type of the VNF in question.
Knowing that, it is possible, forxample, to passirtual  as an
amgument to another function and call it there. Similar to a pointer
to a local ariable, havever, the \alue ofvirtual  is valid only
while the corresponding branch of the VNF is beirecated. A
VNF might also be an operator function or a function template.
To gve a smple example, consider the folldng VNFf com-
puting the partially défied mathematical functionf(x) =
x sin(1/x):

virtual double f (double x) {
return x * sin(1/x);

}

Since this function is undekd for x = 0, mathematicians might
extend its dehition by declaringf (0) = |irTE) f(x) = 0. This can be

X -
reflected by an additional branch of the VNF that completely
overides the original défition, but calls it via the pseudo-
functionvirtual if x is different from zero:

virtual double f (double x) {
if (x == 0) return 0;
else return virtual();

}

For every VNF, there is an initiabranch zero, playing the role of
the previous branch of theirkt branch, that is either empty (if the
result type of the VNF igoid ) or returns the specialauenull
whose typestructnull must be covertible to the result typ&

of the VNF dther by deining a constructor oR that accepts a
single agument of typestruct null or by implementing the
corversion operatonull::operatorR which is pre-declared as
a member function template

template <typename R> operator R () const;
in structnull

2.2 Modules

A branch of a VNF isactivatedat the same time the initialization

of a\ariable dehed immediately before or after the branabwid

be eecuted during the programinitialization phase. This implies
that the branches of a VNF which areided in the same transla-
tion unit will be actvated in textual ordey which is reasonable. If
branches of the same VNF are disitdd ower multiple transla-

tion units, havever, their actvation order will be partially unde-
fined since the C++ standard does not prescribe a particular ini-
tialization order for ariables dehed in diferent translation units.
Because this is unacceptable for mamactical applications, a
module concept similar to Modula-2 [15] and Oberon [16] has
been incorporated into C++, that (amongst other useful things) de-
fines a precise initialization order of the modules making up a pro-
gram and consequently also a precisevatin order of the
branches of VNFs.

A modulein this etension of C++ is a topel namespace that
might be structured intpublic , protected , and private  sec-
tions, just like a dass or struct (with therbt section beingub-
lic ). In contrast to normal namespaces, whoséitieh might
be distriluted aver multiple translation units, a module must be
completely ddfied in a single translation unit (and typicaly
translation unit containsxactly one module). Furthermore, a
module might contaiimport declaations which are ®&tended
using declarations of the form

using A{al, a2}

whereA is the name of a module whose public part contains dec-
larations ofal anda2. The efect of such an import declaration is
identical to a sequence of ordinaging declarations

using ::A::al; using ::A:a2;
with the additional déct that the public part of the imported mod-
ule A will be inserted into the current translation unit as a global
namespace digition of A exactly once before thérét suchus-
ing declaration. (This is a more o@mient way to#include a
header ife containing the public part of the modwlelt implies
that other names declared in the public par,aluch asa3, will
be accessible as qu&ifi namesA::a3 or ::Aza3 .) Further
more, it will be guaranteed that mod@evill be initialized at run
time (and consequentlthe branches of VNFs deéd inA will be
activated) before the importing module will be initializede(i, be-
fore branches difed there will be aotated).

Expressed diérently the overall initialization order of the
modules making up a program is determined byetsing the di-
rected agclic graph consisting of modules (nodes) and import re-
lationships (edges) in a deptinst, left-to-right manner (where
left-to-right corresponds to thexteial order of import declarations
in a module), starting at a designated main module and visiting
each modulexactly once (ie., ignoring already visited ones). If,
for example, the main modul& imports B and C (in this order)
andC importsD andB (in this order), the werall initialization or
der will beB, D, C, A. (In particular B will be initialized beforeD,
even though the tetual order of their import declarations @is
different, because its import declaratiorhiprecedes that d.)

VNF definitions appearing in aublic section of a module will

be reduced to bare declarations when the public part of the mod-
ule gets inserted into another module in ordervimdamultiple
definitions (and actiations) of the same branches. Those appear
ing in aprotected section can be redeéd in the importing
module, it cannot be called from there. This ala module to
provide “hooks” to internal functions where other modules can



“hang on” etensions, without allwing them to directly call these
functions.

To redefne a VNF of an imported module, its qued name
has to be usedyen if its name has beenxgicitly imported as
shavn abwe.

3. OBJECT-ORIENTED APPLICATION

3.1 The Expression Problem

Figure 1 shais a simple class hierargffior the representation of
arithmetic @pressions (root clagspr ) consisting of constantxe
pressions (deved dassConst ) and the four basic arithmetic op-
erations (devied dassesAdd, Sub, Mul, and Div with common

namespace expr {

Il General expression.

struct Expr {
/I Virtual desctructor
I/ to make the type "polymorphic”,
Il'i. e., allow dynamic_cast.
virtual "Expr () {}

/I Constant expression.

struct Const : Expr {
int val; // Value of expression.
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/I Binary expressions.

struct Binary : Expr {
Expr* left; /I Left and right
Expr* right; // subexpression.

struct Add : Binary {};
struct Sub : Binary {};
struct Mul : Binary {};
struct Div : Binary {};

/I Conversion of null to int.

template <> null::operator int () const {
return INT_MIN;

}

I/ Evaluate constant expression.
virtual int eval (Expr* x) {
if (Const* ¢ = dynamic_cast<Const*>(x)) {
return c—>val;

else return virtual();

}

/I Evaluate addition.

virtual int eval (Expr* x)

if (Add* a = dynamic_cast<Add*>(x)) {
return eval(a—>left) + eval(a—>right);

}

/I Evaluate subtraction.
virtual int eval (Expr* x : Sub*) {

return eval(x—>left) — eval(x—>right);
}

/I Likewise for Mul and Div.

Figure 1: Basicimplementation of arithmetic expressions

intermediate base claBgary ). Furthermore, a VNEval is de-
fined which ealuates anxpressiorx, i. e, computes itsalue.

The frst branch of this function uses amxpécit dynam-
ic_cast operator to test whether thegamentx is actually a
constant gpressiorc and, if this is the case, returns isueval .
Otherwise, the préous branch of the function @., branch zero)
would be called viavirtual() , which should neer happen in
this exkample, havever, snce all other kinds ofx@ressions will be
handled by the subsequent branches of the function.

The second branch slie a more corenient way to epress
this frequently occurring programming idiom: “If the function ar
guments satisfy some conditiorxeeute some code, otherwise
delggate the call to the pwéous branchi.By moving the condition
from the body to the head of the function, where it acts as a kind
of guard, the stereotypedise clause can be omitted.

The third branch shwes an gen more comwenient way to per
form a dynamic type test in such a condition by using the colon
operator which isery similar to Jea's instanceof  operatoybut
does not ®ist in standard C++. In addition to performing the re-
spectve dynamic_cast , this operator causes the static type of the
parametex (which isExpr* from a callers point of view) to be-
comeSub* in the function$ body (and apn guards that might ap-
pear in its head), thus eliminating the need forxdraeariable of
that type.

The cowersion operator fromnull  toint must be defied pri-
or to the frst branch of the VNfbecause its implicitly generated
branch zero containsraturnnull statement. The intent of this
corversion operator is to return an otherwise meaningledsev
that shall indicate an actually missinglue. Alternatrely, this op-
erator might threv an exception such ascomplete_vnf , be-
cause thedct that it gets called at run time indicates that the
branches of some VNF returnimg actually do not handle all
possible cases. Finallg programmer might decide tovedys de-
fine the irst branch of a VNF to thwe such an gception (which
might carry useful information such as the funcomime and its
current aguments), before dieing the “real” branches of the
function.

Figure 2 shwis a typicalopeational extension of the system de-
fined so &r that adds a meoperation to the»dsting class hierar
chy, namely the output operatSK.2 In the normal object-oriented
paradigm, adding this operation in a modulaywi.e., without

namespace output {
using expr { Expr, Const, Add, ...... h
using iostream { ostream };

Il Print constant expression.

virtual ostream& operator<<

(ostream& os, Expr* x : Const*) {
return os << x—>val;

}

/I Print addition.
virtual ostream& operator<<
(ostream& o0s, Expr* x : Add*) {
return os <<’(’ << x—>left
<<+ << x=>right << )
}

/I Likewise for Sub, Mul, and Div.

Figure 2: Operational extension

2 C++ standard headers suchi@tream can be used Il mod-
ules in an import declaration.




touching or recompiling thexesting source code) ould be im-
possible, because in order to be dynamically dispatchabbauitiw
be necessary tadd it as virtual member functions to tlesisting
classesxpr , Const , etc. Furthermore, the operation is problem-
atic from an object-oriented point of wiebecause it shall not dis-
patch according to itsrét agument (which is the output stream),
but according to the second. (This problem could be exblizy
defining operator<<  as a normal function that calls an auxiliary
member function on its secondyament.) Vith virtual namespace
functions, haever, the etension can be done in a&ry simple
and natural \ay.

Finally, Fig. 3 shavs a subsequertierarchical extension of the
existing system that adds aweerived dassRemrepresenting re-
mainder gpressions, together with matching redigibns of the
virtual functionseval imported fromexpr andoperator<< im-
ported fromoutput . Even though adding ne subclasses to an
existing class hierarghis hasically simple in the object-oriented
paradigm, this>@ension would be dificult, too, if the operational
extension mentioned ake would hare been performed by em-
ploying the Visitor Pattern [5], because in that case ibuld be
necessary to add wemember functions to allxésting visitor
classes. Agin, by using virtual namespace functions, theemr
sion can be done in a simple and naturay. w

namespace rem {
using expr { Expr, Binary, eval };
using output { operator<<};
using iostream { ostream };

/I Remainder expression.
struct Rem : Binary {};

/I Evaluate remainder expression.
virtual int expr::eval (Expr* X : Rem*) {
return eval(x—>left) % eval(x—>right);

}

/I Print remainder expression.
virtual ostreamé& output::operator<<
(ostream& o0s, Expr* x : Rem*) {
return 0s <<’(’ << x->left
<<%’ << x—=>right <<');

Figure 3: Hierarchical extension

3.2 Multipleand Predicate Dispatch

Figure 4 shas that it is equally easy to write VNFs that dispatch
on the dynamic type of more than onguamnent, ie., perform
multiple dispatch. In this (somdat artifcial) example it is as-
sumed that output to @d shall be more erbose than output to
other kinds of streams.

Finally, Fig. 5 demonstrates that a VNF might actually dispatch clared protected

on ary predicate wer its aguments (or wen other information
such as alues of global or efronment \ariables, user prefer
ences read from a cogération fle, etc.). The module shm
maintains an RPN flag fovery output stream (g., by emply-
ing xalloc  [13]) that indicates whether output ofpgessions to
that stream shall be performed irvexse polish notation. If this
flag is set for a particular stream, output of binaxgressions is
changed accordinglyTo keep the implementation hierarchically
extensible, the internal helping functiampchar that returns the
operator character corresponding to a binafgression is de-

namespace file_output {
using expr { Expr, Const,
using rem { Rem };
using output { operator<<};
using iostream { ostream };
using fstream { ofstream };

/I Print constant expression to a file.
virtual ostream& output::operator<<
(ostream& os : ofstreamé&, Expr* x : Const*) {
return os << "constant expression”
<< " with value " << x->val;

Il Print remainder expression to a file.
virtual ostream& output::operator<<
(ostream& os : ofstreamé&, Expr* x : Rem?*) {
return os << "remainder expression"
<< " with left operand (" << x—>left
<< ") and right operand (" << x->right
<<")"

Figure 4: Multiple dispatch

namespace rpn {
using expr { Expr, Binary, Add, ...... b
using rem { Rem };
using output { operator<< };
using iostream { ostream };

Il Set and get RPN flag of output stream.
virtual void setrpn (ostream& os, bool f);
virtual bool getrpn (const ostream& 0s);
protected:
Il Get operator character of binary expr.
virtual char opchar (Expr* x : Add*)
{ retun'+;}
virtual char opchar (Expr* x : Sub*)
{ retun’-";}
public:
/I RPN output of binary expression.
virtual ostreamé& output::operator<<
(ostream& 0s, Expr* x : Binary*)
if (getrpn(os)) {
return os << x—>left << '’ << x->right
<<’ << opchar(x);

Figure 5: Predicate dispatch

so that other modules can add additional
branches on demand.

4. ASPECT-ORIENTED APPLICATION

4.1 Crosscutting Concerns

It is rather obious that VNFs might also be used to implement
typical crosscutting concerns such as logging by grouping appro-
priate redehitions together in a single module (cf. Fig. 6). In con-
trast to the xamples seen sarf where eery branch of a VNF is
guarded by an appropriate condition and theviptes branch is



namespace logging {

using expr { Expr };
using output { operator<< };
using iostream { cout, endl, ostream };

/' Log executions of eval.
virtual int expr::eval (Expr* x) {
int val = virtual();
cout << "value of " << x
<<"js " <<val << endl;
return val;

}

/I Log executions of operator<<.
virtual ostreamé& output::operator<<
(ostream& o0s, Expr* x) {
cout << "output of " << x << endl;
return virtual();

}

cout <<")" << endl;
return virtual();

}

Similarly, the folloving pattern matches all VNFs accepting e
actly two parameters whoseir§t parameter type i€xpr and
whose result type ist :

virtual int ... (Expr, ...) if (*virtual == 2)

5. IMPLEMENTATION

5.1 Lazy Precompiler

The etensions to the C++ programming language described in
this paper hee been implemented by a “lazy” precompjlere,, a
precompiler that does not perform a complete parseeor & -
mantic analysis of its input. Instead, it only recognizesiasig-

} nificant keywords (such asiamespace, public , or virtual ),
determines their conte (e.g., whetherpublic  or virtual is

Figure6: A crosscutting concern used in a namespace or a class), and then performs appropriate

called implicitly if this condition is violated, the redsfions “local” source code transformations. Because a complete descrip-
shavn here are unconditional and call theyiwas branch xplic- tion of these transformationsowld be &r begond the scope of

itly in their body By that means, it is easily possible to implement this paperonly a fev basic ideas will be gkched in the sequel.

before, afterand aroundadvice to use aspect-oriented terminolo- Basically each branch of a VNF is transformed to a normal
gy [12], without the need to empl@ny additional “aspect wea C++ function possessing the same parameter list and result type as

the VNF and a uniquely generated internal ngmmabody is aug-
mented with the défition of a local class defing operatorg)
4.2 VNF Patterns (cf. Sec. 2.1)[] , *, and & (cf. Sec. 4.2), together with a single in-

) ) ) ) stance of this class storing thalwes of all function guments.
To capture the other essential dimension of aspect-oriented pro-gach appearance of theyword virtual  inside the body (and
gramming, ie., quantifcation [4], it is possible to défie families not inside a local class) will be replaced by the name of this ob-
of similarly structured VNFs with a single dgfion by usingel- ject. Furthermore, a declaration and initialization of a function
lipsesfor parameters, the function name, and/or the result type: aNpointer \ariable is generated which will perform the watibn of
ellipsis used in the parameter list of a VNF is a placeholder for the pranch at run time by appending it to the end of adirist.
ary number of parameters of yaypes, while an ellipsis used as  \wnen the ifst branch of a particular VNF is encountered, a
the function name or result type is a placeholder fgrreme or declaration of another function pointeariable which will alvays

ing” mechanism.

type, respectely. In contrast to normal VNFs, Reever, such point to the last branch of that list as well as an additids
VNF patternsdo not introduce annew functions, it only defne patch functionis generated whose signaturee(j.name, parame-
additional branches for all VNFs deéd so &r (including those  ters, and result type) is identical to the VNF and whose body sim-
defined in imported modules) whose signatumetdesthe pat- ply calls the “current” branch via thissiable. This is the function

tern. (A function signature matches a pattern if and only if it is that will actually be called when the VNF is calledpahere in
possible to replace the ellipses occurring in the pattern with func-the program.

tion or type names [or sequences of the latter in the case of a pa- To gve an eample of these transformationsgires 7 and 8
rameter ellipsis] to makthe resulting signature identical to the  gshay the (simplifed and beautiéd) output of the precompiler

given function signature.) d dlow the programmer to emplo  produced for theirfst and second branch of the VNFal shavn
more selectie matching stratgies, the names of the matched iy Fig, 12

function and its parameter and result types aailable in the

body (and head) of a VNF patterncasstchar*  values&vir- VNF pattern dehitions are simply transformed to sets of normal

tual (function name)yirtual[0] (name of result type)r- VNF deinitions by replacing the ellipses of the pattern with
tual[l]  (name of irst parameter type), etc., while the number of °Even though it is impossible in principle to guarantee the
parameters isvailable as arint value *virtual (i. e., the type uniqueness of a generated name, it can be easilyvedineprac-

of virtual  provides corresponding deftions of the operatorg, tice by emplging unnamed namespaces (to guarantee uniqueness
[ ,and*). across multiple translation units, including dynamically loaded

To gve a dandard OP ample, the follwing VNF pattern modules) and by using names containing double underscore char
defines additional branches for all VNFs whose name starts with acters (which are resexd for implementations and standard li-
Acget braries and thus must not be used by programmers).

In practice, the code generated by the precompiler is much more
complicated, since a lazy precompiler is basically unable to distin-
guish the branches ofverloaded VNFs if thg possess the same
number of parameters. (This is due to thetfthat type names
might hare multiple “aliases” introduced, @., by means of
typedef orusing declarations.) @ overcome this problem, the
precompiler actually generateery tricky template code that del-
egdes this verk to the underlying C++ compiler

virtual ... ... (..
if (strncmp(&virtual, "A::get”, 6) == 0) {
cout << virtual[0] << " " << &virtual << "(";
for (inti=1; i<=*virtual; i++) {
if (i>1)cout<<™,";
cout << virtual[i];



/I Function pointer type.
typedef int (*eval__type) (Expr*);

/I Branch zero.
int eval__0 (Expr* x)
{ r eturn (Expr*)null; }

/I Variable pointing to current branch.
eval__type eval__current = eval__0;

/I Dispatch function.
int eval (Expr* x)
{ r eturn eval__current(x); }

/I Variable pointing to previous branch.
eval__type eval__prev__1=eval_ current;

/I This branch.
inteval__1 (Expr* x) {
Il Instance of local class
Il replacing keyword virtual.
struct virtual__class : virtual__base<int> {
/I Copy of function argument
I and constructor initializing it.
Expr* x;
virtual__class (Expr* x) : x(x) {}

I Function call operator

I/ calling previous branch.

int operator() () const

{ r eturneval__prev__1(x); }

/I Introspection operators.

const char* operator] (int i) const {
switch (i) {
case 0: return "int";
case 1: return "expr::Expr*",
default: return O;
}

}

int operator* () const
{retunl;}
const char* operatoré& () const
{ r eturn "expr:eval"; }

} virtual__inst(x);

/I Original function body.
if (Const* ¢ = dynamic_cast<Const*>(x)) {
return c->val;

else return virtual__inst();

}
/I Adjust variable pointing to current branch
/I by initializing a dummy variable.
eval__type eval__current__1=
eval__current=eval 1,
Figure 7: Transformation of first branch of eval (cf. Fig. 1)

matching type and function names from all normal VNFRnilef
tions encountered sauf

A module is transformed to a C++ sourde €ontaining the com-
plete code of the module plus an additional heatiecéntaining

/I Variable pointing to previous branch.
eval__type eval prev__2=eval current;

/I This branch.
int eval__2 (Expr* x) {
Il Instance of local class
Il replacing keyword virtual.
struct virtual__class : virtual__base<int> {

} virtual__inst(x);

/I Original function head and body.
if (Add* a = dynamic_cast<Add*>(x)) {
return eval(a—>left) + eval(a—>right);

Il Implicit call of previous branch.
else return virtual__inst();

}

/I Adjust variable pointing to current branch

Il by initializing a dummy variable.

eval__type eval__current__ 2 =
eval__current=eval__2;

Figure 8: Transformation of second branch of eval (cf. Fig. 1)

5.2 Optimization

Because the dispatch function of a VNF described/afiovays

calls the current branch indirectly via a function poiniaiable,

evay VNF call incurs an additional function callven if there is

only a single branch of the VNF (which happens frequently in
practice, if @ery public function of a module is daéd virtual

in order to allav for later modular xensions). @ avoid this pef
formance penalty (and thus to encourage programmers to actually
pursue this stratgy), the dispatch function can test a flag to check
whether the VNF possessesaetly one branch (this flag is set
when the ifst branch is acteted and reset when additional
branches are awtited) and directly xecute a cop of the code of

the frst branch in place if this is the case; otherwise, the current
branch will be called as before. By that means, VNFs possessing a
single branch can beecuted almost as #&€ient as normal func-
tions, and an optimizing compiler willven be able to inline their

code into calling functions.

6. RELATED WORK

It has already been sl in Sec. 3 that VNFs are a generalization
of object-oriented single, multiple, and predicate-based [3]
method dispatch. In contrast to these approachesgvien no a-
tempt is made tarfd thebestmatching branch of a functionub
always thefirst matching branch (in werse actvation order) is
executed. While this hedly simplifies both the semantics and the
implementation of the approach, the resulting semanticsvis ob
ously somwhat diferent. For mary practical applications, weev-

er, the two s=mantics (best matching v&st matching branch) co-
incide. In particularif VNF branches are deéd in the same eor
der as the classes theperate on, the total order of branches is
compatible with the partial order between base classes anddderi
classes, since a deedl dass is necessarily deéd after its base
classes. Furthermore, if the guards of all branches test for mutual-
ly disjoint predicates, the order of the branches becomes totally ir

only the public part. Import declarations are transformed as de-relevant.

scribed in Sec. 2.2.

VNFs also capture aspect-oriented advice for simple call and
execution join points [12]. If the information hiding principle is
applied strictly i. e, all set and get operations on datddf are
encapsulated in VNFs, thelso capture set and get join points.



Finally, control flow (cflow) join points can be simulated byep-
riding the “top leel” function with a branch that sets a flag when
entering the function and resets it whenvieg it, and @erriding
all “subordinate” functions (typically by emplimg a VNF pat-

The module concept for C++ introduced in this paper is actually a
mixture of Modula-2 modules [15], Oberon modules [16], and
C++ classes: The basic idea has beeartdiom Modula-2 where

it is possible to import both complete modules (and use dhlif

tern) with branches that test this flag. Thus, a broad range ofnames to refer to theirxported entities) and indidual names

pointcut expressions pnided by AspectC++ is eered.

The concept of VNF patterns is a rather simple and straightfor
ward extension of plain VNFs which per se is of course much less
expressve than the pattern matchingadilities huilt into As-
pectC++. On the other hand, the ability to refer to the funetion’

from particular modules (which can then be used unde@yifin
a language such as C++ that suppossrloading of (function)
names, it is possible to import the same name froferdiit mod-
ules as long as their dieitions do not conflict.

In contrast to Modula-2, Ut in accordance with Oberon, the

name as well as its parameter and result types (in demanglegublic and pwate parts of a module are not separated intemif

form!) in the function$ guards and therefore to use this informa-
tion in arbitrary predicates, alle programmers to implement
even more pressve a corvenient matching stratgges by &-
ploiting the full expressieness of C++. In other avds, instead of
introducing a separatgointcut languge with numerous addition-

al language constructs, the base language C++ is reusqutése
“pointcuts” By defining the predicates used in the guards of
VNFs as VNFs themsebg, it is @en possible to redéfie them
later and by that means acheedfects similar to virtual pointcuts
in AspectC++.

VNFs hare ©me olvious similarities with generic functions in
CLOS [8] (and other languages based on comparable idegs, e.
Dylan [2]) since both are dekd outside anclass (and thus can
be freely distribted wer a program) and both pwide multiple
dispatch. Furthermore, before, afard around methods in CLOS
provide a great deal of figbility in retroactvely extending ist-
ing functions, which can be enhanceerefurther by usedefned
method combinations [9]. kieever, even with the latterthe speci-
ficity of methods remains a primary ordering principle, and it is
impossible to get the list of all applicable methods simply in the
order of their declaration. Furthermore, it is impossible tindef
two or more methods héng the same sped@fty and the same
method qualiers (eg., two generally applicable around meth-
ods). In contrast, thea€t that VNFs do not care about the speci-
ficities of their branchesubsimply use their linear agttion or
der, does not only simplify their semantics, implementation, and
use, lit also allevs complete redefitions of a function without
losing its preious deinition.

The same is true for dynamically scoped functions [1], with one
noteworthy difference: Instead of a linear list, which is onk¢ e
tended by ne VNF branches, Wt never reduced, dynamically
scoped functions are actually based on a stack @fitiefis that
grows and shrinks dynamicallifurthermore, push and pop opera-
tions on this stack are not pided eplicitly and independent]y
but only in implicit combination by means ofdilet macro that
pushes a ne definition, executes some code with this defion
in effect, and ihally pops it agin. Therefore, it is impossible to
install permanent redeftions of functions whose fefct exceeds
the lifetime of their defing scope. Furthermore, installing agar
number of gtensve redefnitions viadflet  (instead of using glo-
bal defnitions for that purpose) might sigidéntly reduce the
readability of the code. On the other hand, the possibility to rede-
fine a function only temporarilyhat is currently missing in the
concept of VNFs, appears to be quite useful in certain circum-
stances.

Finally, the way virtual  is used to call the pveous branch of
a VNF resembles theayinner is used in BEA [10]. Howvever,
the order of gecution is eactly reversed: Whilevirtual  is used
in a redehition to call the preious deinition, inner is used in
the original dehition to call a possible redeftion, which im-
plies that the original defition cannot be changedubonly e-
tended by a redigfition in BETA.

ent translation units,ub rather intgrated into a single unit. Final-
ly, the idea to structure a module into sections introduced by the
keywordspublic andprivate (and possiblyrotected ) — in-
stead of using speciakgort marks to distinguishxported names
as in Oberon--has been adopted from C++ classes. \{ényeoth-
er respect, hgever, a nodule is quite dierent from a class. In
particular it cannot be instantiateckplicitly, but rather constitutes
a dngleton global entity By following the comention to split a
module into a single public section at thegibaing that contains
bare declarations of alkported entities and a subsequenvaie
section containing the correspondingidigibns (plus necessary
internal entities), the Modula-2 approach of separating these parts
can be simulated without actually needing sgparate translation
units.

In addition to the purpose mentioned in Sec. 2€, establish-
ing a unique initialization order among multiple translation units
of a program which in turn deks a unique actition order for
VNF branches, modules pride a simple yet &ctive way to en-
force the well-knan principle of information hiding [11]: By
defining data structures (such sasuctConst: Expr{int
val;} ) in the private part of a module andjeorting only corre-
sponding pointer types (@., typedef Const* ConstPtr ) and
(virtual) functions operating on them (g, virtualintvalue
(ConstPtrc){returnc—>val;} ), it is possible to hide im-
plementation details of a module from client modules without
needing to emplp classes for that purpose. If a single module
contains dehitions of multiple data types (@., a container type
and an accompging iterator type), its functions are naturally al-
lowed to operate on all of their internals, without needing to em-
ploy sophisticated constructs such as nested or friend classes to
achieve that aim.
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