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ABSTRACT
Virtual namespace functions (VNFs) are introduced as C++ func-
tions defined at global or namespace scope which can be redefined
similar to virtual member functions. Even though this is a rela-
tively simple concept, hardly more complex than ordinary C func-
tions, it is shown that VNFs subsume object-oriented single, mul-
tiple, and predicate-based method dispatch as well as aspect-
oriented before, after, and around advice. Their implementation by
means of a “lazy” precompiler for C++ is briefly described.

1. INTRODUCTION
C++ provides both ordinary functions (defined at global or name-
space scope, i.e., outside any class) and member functions be-
longing to a particular class [13].1 The latter might be defined
virtual to support dynamic binding and object-oriented pro-
gramming, while the former are always bound statically.

A sev ere limitation of (virtual) member functions (that is also
present in other object-oriented languages where member func-
tions are usually called methods) is the fact that they must be de-
clared in the class they belong to, and it is impossible to declare
additional ones “later,” i . e., in a different place of a program. This
leads to the well-known “expression problem” [14], i.e., the fact
that it is easy to add new (sub)classes to an existing system, but
very hard to add new operations to these classes in amodular
way, i. e., without touching or recompiling existing source code.
The Visitor Pattern [5] has been developed as a workaround to this
problem, but its application is rather complicated and must be
planned in advance, i.e., it does not help to cope withunanticipat-
ed software evolution.

On the other hand, ordinary functions, which will be called
namespace functionsin the sequel since they are defined at (glo-
bal or) namespace scope, can be added to a system in a complete-
ly modular way at any time without any problems. However, they
suffer from the fact that they are always bound statically (i.e.,
they cannot be overridden or redefined), which makes it hard to

1 Friend functions defined in a class are considered ordinary func-
tions for the purpose of this distinction.
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add new subclasses to a system whose operations are implemented
as such functions.

Given these complementary advantages and disadvantages of
namespace and virtual member functions, it seems very promising
to provide virtual namespace functions(VNFs, cf. Sec. 2) which
combine the advantages of namespace and virtual functions:

• Because they will be defined at (global or) namespace scope, it
will always be possible to add new VNFs to an existing system
without needing to touch or recompile existing source code.

• Because they will be bound dynamically, it will always be pos-
sible to redefine them later if new subclasses have been added to
a system, again without needing to touch or recompile existing
source code.

In particular, the expression problem can be solved in a very sim-
ple and straightforward way (much simpler as suggested, for in-
stance, by [14], where generics are used as a technical trick to
solve a problem that is not inherently generic), and advanced dis-
patch strategies such as multiple or predicate dispatch [3] happen
to become special cases of VNFs (cf. Sec. 3).

Furthermore, the particular kind of dynamic binding that will be
employed will also allow the flexible extension and/or modifica-
tion of existing VNF definitions in a manner similar toadvice in
AspectC++ [12]. To capture the other essential dimension of
aspect-oriented programming, i.e., quantification, VNF patterns
are provided as a means to conveniently define families of similar-
ly structured VNFs (cf. Sec. 4).

Vi rtual namespace functions are implemented by a “lazy” pre-
compiler for C++, i.e., a precompiler that does not perform a
complete parse or semantic analysis of its input, but only recog-
nizes particular keywords of interest, analyzes their context, and
performs appropriate local source code transformations (cf.
Sec. 5).

Since the concept of VNFs is similar to several other approach-
es found in the literature, a discussion of related work is given at
the end of the paper (cf. Sec. 6).

Even though VNFs are presented in this paper as an extension to
the C++ programming language (and C++ terminology is used),
the underlying concept is actually language-independent and
might be incorporated into any imperative (i. e., procedural or ob-
ject-oriented) language. In fact, the same idea has also been im-
plemented asdynamic class methodsin Java [7] and asdynamic
proceduresin Oberon(-2) [6].



2. VIRTUAL NAMESPACE FUNCTIONS

2.1 Concept
A virtual namespace function (VNF) is an ordinary function de-
fined at (global or) namespace scope whose definition is preceded
by the keyword virtual (whose application is restricted to mem-
ber functions in original C++). In contrast to normal functions
which adhere to theone definition rule (ODR) [13], i.e., a pro-
gram must not contain more than one definition of the same func-
tion (except if it is an inline or template function, in which case
the definitions in all translation units must be identical), a VNF
might be defined multiple times with different function bodies in
the same or different translation units. In such a case, every new
definition (also called abranch of the VNF) completely overrides
the previous definition, so that calls to the function will be redi-
rected to the new definition as soon as it has beenactivatedduring
the program’s initialization phase (see Sec. 2.2 for a precise defi-
nition of activation). However, every branch of a VNF is able to
call the previous branch of the same VNF by using the keyword
virtual as the name of a parameter-less pseudo function (i.e., an
object providing a definition of operator()() ) that calls the pre-
vious branch with the same arguments as the current branch (even
if the formal parameters have been modified before callingvir-
tual ). The type of the function objectvirtual is a subtype of
the predefined typevirtual<R> (i. e., virtual is treated as a
template name) if R is the result type of the VNF in question.
Knowing that, it is possible, for example, to passvirtual as an
argument to another function and call it there. Similar to a pointer
to a local variable, however, the value ofvirtual is valid only
while the corresponding branch of the VNF is being executed. A
VNF might also be an operator function or a function template.

To giv e a simple example, consider the following VNF f com-
puting the partially defined mathematical functionf (x) =
x sin(1/x):

virtual double f (double x) {
return x * sin(1/x);

}

Since this function is undefined for x = 0, mathematicians might
extend its definition by declaringf (0) =

x→0
lim f (x) = 0. This can be

reflected by an additional branch of the VNF that completely
overrides the original definition, but calls it via the pseudo-
functionvirtual if x is different from zero:

virtual double f (double x) {
if (x == 0) return 0;
else return virtual();

}

For every VNF, there is an initialbranch zero, playing the role of
the previous branch of the first branch, that is either empty (if the
result type of the VNF isvoid ) or returns the special valuenull
whose typestruct null must be convertible to the result typeR
of the VNF, either by defining a constructor ofR that accepts a
single argument of typestruct null or by implementing the
conversion operatornull::operator R which is pre-declared as
a member function template

template <typename R> operator R () const;

in struct null .

2.2 Modules
A branch of a VNF isactivatedat the same time the initialization
of a variable defined immediately before or after the branch would
be executed during the program’s initialization phase. This implies
that the branches of a VNF which are defined in the same transla-
tion unit will be activated in textual order, which is reasonable. If
branches of the same VNF are distributed over multiple transla-
tion units, however, their activation order will be partially unde-
fined since the C++ standard does not prescribe a particular ini-
tialization order for variables defined in different translation units.
Because this is unacceptable for many practical applications, a
module concept similar to Modula-2 [15] and Oberon [16] has
been incorporated into C++, that (amongst other useful things) de-
fines a precise initialization order of the modules making up a pro-
gram and consequently also a precise activation order of the
branches of VNFs.

A modulein this extension of C++ is a top-level namespace that
might be structured intopublic , protected , and private sec-
tions, just like a class or struct (with the first section beingpub-
lic ). In contrast to normal namespaces, whose definition might
be distributed over multiple translation units, a module must be
completely defined in a single translation unit (and typically, a
translation unit contains exactly one module). Furthermore, a
module might containimport declarations which are extended
using declarations of the form

using A { a1, a2 };

whereA is the name of a module whose public part contains dec-
larations ofa1 anda2. The effect of such an import declaration is
identical to a sequence of ordinaryusing declarations

using ::A::a1; using ::A::a2;

with the additional effect that the public part of the imported mod-
ule A will be inserted into the current translation unit as a global
namespace definition of A exactly once before the first suchus-
ing declaration. (This is a more convenient way to #include a
header file containing the public part of the moduleA. It implies
that other names declared in the public part ofA, such asa3, will
be accessible as qualified namesA::a3 or ::A::a3 .) Further-
more, it will be guaranteed that moduleA will be initialized at run
time (and consequently, the branches of VNFs defined inA will be
activated) before the importing module will be initialized (i.e., be-
fore branches defined there will be activated).

Expressed differently, the overall initialization order of the
modules making up a program is determined by traversing the di-
rected acyclic graph consisting of modules (nodes) and import re-
lationships (edges) in a depth-first, left-to-right manner (where
left-to-right corresponds to the textual order of import declarations
in a module), starting at a designated main module and visiting
each module exactly once (i.e., ignoring already visited ones). If,
for example, the main moduleA imports B and C (in this order)
andC importsD andB (in this order), the overall initialization or-
der will beB, D, C, A. (In particular, B will be initialized beforeD,
ev en though the textual order of their import declarations inC is
different, because its import declaration inA precedes that ofC.)

VNF definitions appearing in apublic section of a module will
be reduced to bare declarations when the public part of the mod-
ule gets inserted into another module in order to avoid multiple
definitions (and activations) of the same branches. Those appear-
ing in a protected section can be redefined in the importing
module, but cannot be called from there. This allows a module to
provide “hooks” to internal functions where other modules can



“hang on” extensions, without allowing them to directly call these
functions.

To redefine a VNF of an imported module, its qualified name
has to be used, even if i ts name has been explicitly imported as
shown above.

3. OBJECT-ORIENTED APPLICATION

3.1 The Expression Problem
Figure 1 shows a simple class hierarchy for the representation of
arithmetic expressions (root classExpr ) consisting of constant ex-
pressions (derived classConst ) and the four basic arithmetic op-
erations (derived classesAdd, Sub, Mul , and Div with common

namespace expr {
// General expression.
struct Expr {

// Virtual desctructor
// to make the type "polymorphic",
// i. e., allow dynamic_cast.
virtual ˜Expr () {}

};

// Constant expression.
struct Const : Expr {

int val; // Value of expression.
};

// Binary expressions.
struct Binary : Expr {

Expr* left; // Left and right
Expr* right; // subexpression.

};
struct Add : Binary {};
struct Sub : Binary {};
struct Mul : Binary {};
struct Div : Binary {};

// Conversion of null to int.
template <> null::operator int () const {

return INT_MIN;
}

// Evaluate constant expression.
virtual int eval (Expr* x) {

if (Const* c = dynamic_cast<Const*>(x)) {
return c−>val;

}
else return virtual();

}

// Evaluate addition.
virtual int eval (Expr* x)
if (Add* a = dynamic_cast<Add*>(x)) {

return eval(a−>left) + eval(a−>right);
}

// Evaluate subtraction.
virtual int eval (Expr* x : Sub*) {

return eval(x−>left) − eval(x−>right);
}

// Likewise for Mul and Div.
......

}

Figure 1: Basic implementation of arithmetic expressions

intermediate base classBinary ). Furthermore, a VNFeval is de-
fined which evaluates an expressionx , i. e., computes its value.

The first branch of this function uses an explicit dynam-
ic_cast operator to test whether the argumentx is actually a
constant expressionc and, if this is the case, returns its valueval .
Otherwise, the previous branch of the function (i.e., branch zero)
would be called viavirtual() , which should never happen in
this example, however, since all other kinds of expressions will be
handled by the subsequent branches of the function.

The second branch shows a more convenient way to express
this frequently occurring programming idiom: “If the function ar-
guments satisfy some condition, execute some code, otherwise
delegate the call to the previous branch.” By moving the condition
from the body to the head of the function, where it acts as a kind
of guard, the stereotypedelse clause can be omitted.

The third branch shows an even more convenient way to per-
form a dynamic type test in such a condition by using the colon
operator which is very similar to Java’s instanceof operator, but
does not exist in standard C++. In addition to performing the re-
spective dynamic_cast , this operator causes the static type of the
parameterx (which isExpr* from a caller’s point of view) to be-
comeSub* in the function’s body (and any guards that might ap-
pear in its head), thus eliminating the need for an extra variable of
that type.

The conversion operator fromnull to int must be defined pri-
or to the first branch of the VNF, because its implicitly generated
branch zero contains areturn null statement. The intent of this
conversion operator is to return an otherwise meaningless value
that shall indicate an actually missing value. Alternatively, this op-
erator might throw an exception such asincomplete_vnf , be-
cause the fact that it gets called at run time indicates that the
branches of some VNF returningint actually do not handle all
possible cases. Finally, a programmer might decide to always de-
fine the first branch of a VNF to throw such an exception (which
might carry useful information such as the function’s name and its
current arguments), before defining the “real” branches of the
function.

Figure 2 shows a typicaloperational extension of the system de-
fined so far that adds a new operation to the existing class hierar-
chy, namely the output operator<<.2 In the normal object-oriented
paradigm, adding this operation in a modular way (i.e., without

namespace output {
using expr { Expr, Const, Add, ...... };
using iostream { ostream };

// Print constant expression.
virtual ostream& operator<<
(ostream& os, Expr* x : Const*) {

return os << x−>val;
}

// Print addition.
virtual ostream& operator<<
(ostream& os, Expr* x : Add*) {

return os << ’(’ << x−>left
<< ’+’ << x−>right << ’)’;

}

// Likewise for Sub, Mul, and Div.
......

}

Figure 2: Operational extension
2 C++ standard headers such asiostream can be used like mod-
ules in an import declaration.



touching or recompiling the existing source code) would be im-
possible, because in order to be dynamically dispatchable it would
be necessary toadd it as virtual member functions to theexisting
classesExpr , Const , etc. Furthermore, the operation is problem-
atic from an object-oriented point of view because it shall not dis-
patch according to its first argument (which is the output stream),
but according to the second. (This problem could be solved by
defining operator<< as a normal function that calls an auxiliary
member function on its second argument.) With virtual namespace
functions, however, the extension can be done in a very simple
and natural way.

Finally, Fig. 3 shows a subsequenthierarchical extension of the
existing system that adds a new derived classRemrepresenting re-
mainder expressions, together with matching redefinitions of the
virtual functionseval imported fromexpr andoperator<< im-
ported fromoutput . Even though adding new subclasses to an
existing class hierarchy is basically simple in the object-oriented
paradigm, this extension would be difficult, too, if the operational
extension mentioned above would have been performed by em-
ploying the Visitor Pattern [5], because in that case it would be
necessary to add new member functions to all existing visitor
classes. Again, by using virtual namespace functions, the exten-
sion can be done in a simple and natural way.

namespace rem {
using expr { Expr, Binary, eval };
using output { operator<< };
using iostream { ostream };

// Remainder expression.
struct Rem : Binary {};

// Evaluate remainder expression.
virtual int expr::eval (Expr* x : Rem*) {

return eval(x−>left) % eval(x−>right);
}

// Print remainder expression.
virtual ostream& output::operator<<
(ostream& os, Expr* x : Rem*) {

return os << ’(’ << x−>left
<< ’%’ << x−>right << ’)’;

}
}

Figure 3: Hierarchical extension

3.2 Multiple and Predicate Dispatch
Figure 4 shows that it is equally easy to write VNFs that dispatch
on the dynamic type of more than one argument, i.e., perform
multiple dispatch. In this (somewhat artificial) example it is as-
sumed that output to a file shall be more verbose than output to
other kinds of streams.

Finally, Fig. 5 demonstrates that a VNF might actually dispatch
on any predicate over its arguments (or even other information
such as values of global or environment variables, user prefer-
ences read from a configuration file, etc.). The module shown
maintains an RPN flag for every output stream (e.g., by employ-
ing xalloc [13]) that indicates whether output of expressions to
that stream shall be performed in reverse polish notation. If this
flag is set for a particular stream, output of binary expressions is
changed accordingly. To keep the implementation hierarchically
extensible, the internal helping functionopchar that returns the
operator character corresponding to a binary expression is de-

namespace file_output {
using expr { Expr, Const, ...... };
using rem { Rem };
using output { operator<< };
using iostream { ostream };
using fstream { ofstream };

// Print constant expression to a file.
virtual ostream& output::operator<<
(ostream& os : ofstream&, Expr* x : Const*) {

return os << "constant expression"
<< " with value " << x−>val;

}

......

// Print remainder expression to a file.
virtual ostream& output::operator<<
(ostream& os : ofstream&, Expr* x : Rem*) {

return os << "remainder expression"
<< " with left operand (" << x−>left
<< ") and right operand (" << x−>right
<< ")";

}
}

Figure 4: Multiple dispatch

namespace rpn {
using expr { Expr, Binary, Add, ...... };
using rem { Rem };
using output { operator<< };
using iostream { ostream };

// Set and get RPN flag of output stream.
virtual void setrpn (ostream& os, bool f);
virtual bool getrpn (const ostream& os);

protected:
// Get operator character of binary expr.
virtual char opchar (Expr* x : Add*)
{ r eturn ’+’; }
virtual char opchar (Expr* x : Sub*)
{ r eturn ’−’; }
......

public:
// RPN output of binary expression.
virtual ostream& output::operator<<
(ostream& os, Expr* x : Binary*)
if (getrpn(os)) {

return os << x−>left << ’ ’ << x−>right
<< ’ ’ << opchar(x);

}
}

Figure 5: Predicate dispatch

clared protected so that other modules can add additional
branches on demand.

4. ASPECT-ORIENTED APPLICATION

4.1 Crosscutting Concerns
It is rather obvious that VNFs might also be used to implement
typical crosscutting concerns such as logging by grouping appro-
priate redefinitions together in a single module (cf. Fig. 6). In con-
trast to the examples seen so far, where every branch of a VNF is
guarded by an appropriate condition and the previous branch is



namespace logging {
using expr { Expr };
using output { operator<< };
using iostream { cout, endl, ostream };

// Log executions of eval.
virtual int expr::eval (Expr* x) {

int val = virtual();
cout << "value of " << x

<< " is " << val << endl;
return val;

}

// Log executions of operator<<.
virtual ostream& output::operator<<
(ostream& os, Expr* x) {

cout << "output of " << x << endl;
return virtual();

}
}

Figure 6: A crosscutting concern

called implicitly if this condition is violated, the redefinitions
shown here are unconditional and call the previous branch explic-
itly in their body. By that means, it is easily possible to implement
before, after, and aroundadvice, to use aspect-oriented terminolo-
gy [12], without the need to employ any additional “aspect weav-
ing” mechanism.

4.2 VNF Patterns
To capture the other essential dimension of aspect-oriented pro-
gramming, i.e., quantification [4], it is possible to define families
of similarly structured VNFs with a single definition by usingel-
lipsesfor parameters, the function name, and/or the result type: an
ellipsis used in the parameter list of a VNF is a placeholder for
any number of parameters of any types, while an ellipsis used as
the function name or result type is a placeholder for any name or
type, respectively. In contrast to normal VNFs, however, such
VNF patternsdo not introduce any new functions, but only define
additional branches for all VNFs defined so far (including those
defined in imported modules) whose signaturematches the pat-
tern. (A function signature matches a pattern if and only if it is
possible to replace the ellipses occurring in the pattern with func-
tion or type names [or sequences of the latter in the case of a pa-
rameter ellipsis] to make the resulting signature identical to the
given function signature.) To allow the programmer to employ
more selective matching strategies, the names of the matched
function and its parameter and result types are available in the
body (and head) of a VNF pattern asconst char* values&vir-
tual (function name),virtual[0] (name of result type),vir-
tual[1] (name of first parameter type), etc., while the number of
parameters is available as anint value *virtual (i. e., the type
of virtual provides corresponding definitions of the operators&,
[] , and * ).

To giv e a standard AOP example, the following VNF pattern
defines additional branches for all VNFs whose name starts with
A::get :

virtual ... ... (...)
if (strncmp(&virtual, "A::get", 6) == 0) {

cout << virtual[0] << " " << &virtual << "(";
for (int i = 1; i <= *virtual; i++) {

if (i > 1) cout << ", ";
cout << virtual[i];

}

cout << ")" << endl;
return virtual();

}

Similarly, the following pattern matches all VNFs accepting ex-
actly two parameters whose first parameter type isExpr and
whose result type isint :

virtual int ... (Expr, ...) if (*virtual == 2)
{ . ..... }

5. IMPLEMENTATION

5.1 Lazy Precompiler
The extensions to the C++ programming language described in
this paper have been implemented by a “lazy” precompiler, i. e., a
precompiler that does not perform a complete parse or even a se-
mantic analysis of its input. Instead, it only recognizes a few sig-
nificant keywords (such asnamespace , public , or virtual ),
determines their context (e.g., whetherpublic or virtual is
used in a namespace or a class), and then performs appropriate
“local” source code transformations. Because a complete descrip-
tion of these transformations would be far beyond the scope of
this paper, only a few basic ideas will be sketched in the sequel.

Basically, each branch of a VNF is transformed to a normal
C++ function possessing the same parameter list and result type as
the VNF and a uniquely generated internal name.3 Its body is aug-
mented with the definition of a local class defining operators()
(cf. Sec. 2.1),[] , * , and & (cf. Sec. 4.2), together with a single in-
stance of this class storing the values of all function arguments.
Each appearance of the keyword virtual inside the body (and
not inside a local class) will be replaced by the name of this ob-
ject. Furthermore, a declaration and initialization of a function
pointer variable is generated which will perform the activation of
the branch at run time by appending it to the end of a linked list.

When the first branch of a particular VNF is encountered, a
declaration of another function pointer variable which will always
point to the last branch of that list as well as an additionaldis-
patch function is generated whose signature (i.e., name, parame-
ters, and result type) is identical to the VNF and whose body sim-
ply calls the “current” branch via this variable. This is the function
that will actually be called when the VNF is called anywhere in
the program.

To giv e an example of these transformations, figures 7 and 8
show the (simplified and beautified) output of the precompiler
produced for the first and second branch of the VNFeval shown
in Fig. 1.4

VNF pattern definitions are simply transformed to sets of normal
VNF definitions by replacing the ellipses of the pattern with
3 Even though it is impossible in principle to guarantee the
uniqueness of a generated name, it can be easily achieved in prac-
tice by employing unnamed namespaces (to guarantee uniqueness
across multiple translation units, including dynamically loaded
modules) and by using names containing double underscore char-
acters (which are reserved for implementations and standard li-
braries and thus must not be used by programmers).
4 In practice, the code generated by the precompiler is much more
complicated, since a lazy precompiler is basically unable to distin-
guish the branches of overloaded VNFs if they possess the same
number of parameters. (This is due to the fact, that type names
might have multiple “aliases” introduced, e.g., by means of
typedef or using declarations.) To overcome this problem, the
precompiler actually generates very tricky template code that del-
eg ates this work to the underlying C++ compiler.



// Function pointer type.
typedef int (*eval__type) (Expr*);

// Branch zero.
int eval__0 (Expr* x)
{ r eturn (Expr*)null; }

// Variable pointing to current branch.
eval__type eval__current = eval__0;

// Dispatch function.
int eval (Expr* x)
{ r eturn eval__current(x); }

// Variable pointing to previous branch.
eval__type eval__prev__1 = eval__current;

// This branch.
int eval__1 (Expr* x) {

// Instance of local class
// replacing keyword virtual.
struct virtual__class : virtual__base<int> {

// Copy of function argument
// and constructor initializing it.
Expr* x;
virtual__class (Expr* x) : x(x) {}

// Function call operator
// calling previous branch.
int operator() () const
{ r eturn eval__prev__1(x); }

// Introspection operators.
const char* operator[] (int i) const {

switch (i) {
case 0: return "int";
case 1: return "expr::Expr*";
default: return 0;
}

}
int operator* () const
{ r eturn 1; }
const char* operator& () const
{ r eturn "expr::eval"; }

} v irtual__inst(x);

// Original function body.
if (Const* c = dynamic_cast<Const*>(x)) {

return c−>val;
}
else return virtual__inst();

}

// Adjust variable pointing to current branch
// by initializing a dummy variable.
eval__type eval__current__1 =

eval__current = eval__1;

Figure 7: Transformation of first branch of eval (cf. Fig. 1)

matching type and function names from all normal VNF defini-
tions encountered so far.

A module is transformed to a C++ source file containing the com-
plete code of the module plus an additional header file containing
only the public part. Import declarations are transformed as de-
scribed in Sec. 2.2.

// Variable pointing to previous branch.
eval__type eval__prev__2 = eval__current;

// This branch.
int eval__2 (Expr* x) {

// Instance of local class
// replacing keyword virtual.
struct virtual__class : virtual__base<int> {

......
} v irtual__inst(x);

// Original function head and body.
if (Add* a = dynamic_cast<Add*>(x)) {

return eval(a−>left) + eval(a−>right);
}
// Implicit call of previous branch.
else return virtual__inst();

}

// Adjust variable pointing to current branch
// by initializing a dummy variable.
eval__type eval__current__2 =

eval__current = eval__2;

Figure 8: Transformation of second branch of eval (cf. Fig. 1)

5.2 Optimization
Because the dispatch function of a VNF described above always
calls the current branch indirectly via a function pointer variable,
ev ery VNF call incurs an additional function call, even if there is
only a single branch of the VNF (which happens frequently in
practice, if every public function of a module is definedvirtual
in order to allow for later modular extensions). To avoid this per-
formance penalty (and thus to encourage programmers to actually
pursue this strategy), the dispatch function can test a flag to check
whether the VNF possesses exactly one branch (this flag is set
when the first branch is activated and reset when additional
branches are activated) and directly execute a copy of the code of
the first branch in place if this is the case; otherwise, the current
branch will be called as before. By that means, VNFs possessing a
single branch can be executed almost as efficient as normal func-
tions, and an optimizing compiler will even be able to inline their
code into calling functions.

6. RELATED WORK
It has already been shown in Sec. 3 that VNFs are a generalization
of object-oriented single, multiple, and predicate-based [3]
method dispatch. In contrast to these approaches, however, no at-
tempt is made to find thebestmatching branch of a function, but
always the first matching branch (in reverse activation order) is
executed. While this heavily simplifies both the semantics and the
implementation of the approach, the resulting semantics is obvi-
ously somewhat different. For many practical applications, howev-
er, the two semantics (best matching vs. first matching branch) co-
incide. In particular, if VNF branches are defined in the same or-
der as the classes they operate on, the total order of branches is
compatible with the partial order between base classes and derived
classes, since a derived class is necessarily defined after its base
classes. Furthermore, if the guards of all branches test for mutual-
ly disjoint predicates, the order of the branches becomes totally ir-
relevant.

VNFs also capture aspect-oriented advice for simple call and
execution join points [12]. If the information hiding principle is
applied strictly, i. e., all set and get operations on data fields are
encapsulated in VNFs, they also capture set and get join points.



Finally, control flow (cflow) join points can be simulated by over-
riding the “top level” function with a branch that sets a flag when
entering the function and resets it when leaving it, and overriding
all “subordinate” functions (typically by employing a VNF pat-
tern) with branches that test this flag. Thus, a broad range of
pointcut expressions provided by AspectC++ is covered.

The concept of VNF patterns is a rather simple and straightfor-
ward extension of plain VNFs which per se is of course much less
expressive than the pattern matching facilities built into As-
pectC++. On the other hand, the ability to refer to the function’s
name as well as its parameter and result types (in demangled
form!) in the function’s guards and therefore to use this informa-
tion in arbitrary predicates, allows programmers to implement
ev en more expressive or convenient matching strategies by ex-
ploiting the full expressiveness of C++. In other words, instead of
introducing a separatepointcut languagewith numerous addition-
al language constructs, the base language C++ is reused to express
“pointcuts.” By defining the predicates used in the guards of
VNFs as VNFs themselves, it is even possible to redefine them
later and by that means achieve effects similar to virtual pointcuts
in AspectC++.

VNFs have some obvious similarities with generic functions in
CLOS [8] (and other languages based on comparable ideas, e.g.,
Dylan [2]) since both are defined outside any class (and thus can
be freely distributed over a program) and both provide multiple
dispatch. Furthermore, before, after, and around methods in CLOS
provide a great deal of flexibility in retroactively extending exist-
ing functions, which can be enhanced even further by user-defined
method combinations [9]. However, even with the latter, the speci-
ficity of methods remains a primary ordering principle, and it is
impossible to get the list of all applicable methods simply in the
order of their declaration. Furthermore, it is impossible to define
two or more methods having the same specificity and the same
method qualifiers (e.g., two generally applicable around meth-
ods). In contrast, the fact that VNFs do not care about the speci-
ficities of their branches, but simply use their linear activation or-
der, does not only simplify their semantics, implementation, and
use, but also allows complete redefinitions of a function without
losing its previous definition.

The same is true for dynamically scoped functions [1], with one
noteworthy difference: Instead of a linear list, which is only ex-
tended by new VNF branches, but never reduced, dynamically
scoped functions are actually based on a stack of definitions that
grows and shrinks dynamically. Furthermore, push and pop opera-
tions on this stack are not provided explicitly and independently,
but only in implicit combination by means of adflet macro that
pushes a new definition, executes some code with this definition
in effect, and finally pops it again. Therefore, it is impossible to
install permanent redefinitions of functions whose effect exceeds
the lifetime of their defining scope. Furthermore, installing a large
number of extensive redefinitions viadflet (instead of using glo-
bal definitions for that purpose) might significantly reduce the
readability of the code. On the other hand, the possibility to rede-
fine a function only temporarily, that is currently missing in the
concept of VNFs, appears to be quite useful in certain circum-
stances.

Finally, the way virtual is used to call the previous branch of
a VNF resembles the way inner is used in BETA [10]. However,
the order of execution is exactly reversed: Whilevirtual is used
in a redefinition to call the previous definition, inner is used in
the original definition to call a possible redefinition, which im-
plies that the original definition cannot be changed, but only ex-
tended by a redefinition in BETA.

The module concept for C++ introduced in this paper is actually a
mixture of Modula-2 modules [15], Oberon modules [16], and
C++ classes: The basic idea has been taken from Modula-2 where
it is possible to import both complete modules (and use qualified
names to refer to their exported entities) and individual names
from particular modules (which can then be used unqualified). In
a language such as C++ that supports overloading of (function)
names, it is possible to import the same name from different mod-
ules as long as their definitions do not conflict.

In contrast to Modula-2, but in accordance with Oberon, the
public and private parts of a module are not separated into differ-
ent translation units, but rather integrated into a single unit. Final-
ly, the idea to structure a module into sections introduced by the
keywordspublic andprivate (and possiblyprotected ) −− in-
stead of using special export marks to distinguish exported names
as in Oberon −−, has been adopted from C++ classes. (In every oth-
er respect, however, a module is quite different from a class. In
particular, it cannot be instantiated explicitly, but rather constitutes
a singleton global entity.) By following the convention to split a
module into a single public section at the beginning that contains
bare declarations of all exported entities and a subsequent private
section containing the corresponding definitions (plus necessary
internal entities), the Modula-2 approach of separating these parts
can be simulated without actually needing two separate translation
units.

In addition to the purpose mentioned in Sec. 2.2, i.e., establish-
ing a unique initialization order among multiple translation units
of a program which in turn defines a unique activation order for
VNF branches, modules provide a simple yet effective way to en-
force the well-known principle of information hiding [11]: By
defining data structures (such asstruct Const : Expr { int
val; } ) in the private part of a module and exporting only corre-
sponding pointer types (e.g., typedef Const* ConstPtr ) and
(virtual) functions operating on them (e.g., virtual int value
(ConstPtr c) { return c−>val; } ), it is possible to hide im-
plementation details of a module from client modules without
needing to employ classes for that purpose. If a single module
contains definitions of multiple data types (e.g., a container type
and an accompanying iterator type), its functions are naturally al-
lowed to operate on all of their internals, without needing to em-
ploy sophisticated constructs such as nested or friend classes to
achieve that aim.
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