APPLE:
Advanced Procedural Programming L anguage Elements

Christian Heinlein
Dept. of Computer Structess
University of Ulm
Germany
heinlein@informatik.uni-ulm.de

Position Rper for the ECOOP Bvkshop on Programming Languages and Operating Systems
(ECOOP-PLOS 2004)

1. Introduction

Today’s programming languages, in particular aspect-oriented languages such as Aspecté |8}, ha
ceived a mnsiderable dgree of compleity, making it both hard to learn their deatulary” (i. ., sim-

ply know al concepts and constructsferfed by the language) and to “fluently speak” thera.(isuc-
cessfully apply these concepts and constructs in daily programming). In contrast, traditional procedu-
ral languages, such aageal or C, praded just two basic iilding blocks:data structues(records in
particular) andproceduesoperating on them [1]. Modern procedural languages, such as Modula-2 or
Ada, added the concept ofodulesto support encapsulation and information hiding [10]. In object-
oriented languages such asf@ifJava, or C++, these separate and orthogonal entitiee leen com-
bined intoclasseswhich offer subtype polymorphisninheritanceof data structures and procedures
(which are usually callethethodghere), anddynamic bindingof procedures as additional basic con-
cepts.

Even though object-oriented languages support the construction ofsofthat is usually more
flexible, extensible, and reusable than traditional “procedural so#{nt soon turned out that mgn
desirable properties are still missingrexample,modular etensibility (i. ., the ability to &tend an
existing system without modifying or recompiling its source code) is limited to addimg ne
(sub)classes to a class hieratohhile adding nev operations (methods) txisting classes is impos-
sible. Similarly retroactvely extending or modifying the bekieur of operations is infeasible. A great
deal of research feirts hare keen @pended in the past years teecome these limitations by priol-
ing even more nev concepts, ., open classes [3] or advice and iftigre member declarations in
aspect-oriented languages [9], to name onlya fe

Even though the set of these additional concepts ifi tgeriit” (in the sense that théndeed sole
the problems encountered with object-oriented languages), the question arises whetnerrealy
“necessary” (in the sense that a smaller or simpler set of concepls mot be siifcient). Using As-
pect] as anxéreme g@ample, this language prides eight more or less thfent kinds of “proce-
dures;i.e, named blocks ofxecutable code: static methods, instance methods and constructors de-
fined in classes (as in the base languaga),Jalus instance methods and constructornddfas in-
tertype members in aspects, plus before, afteat around advice (still ggecting the distinction be-
tween “after returning, after thraving,” and general “after” advice).

Figure 1 illustrates this obseton graphically: The road leading from procedural languages via ob-
ject-oriented languages to “conceptuallyfisint” aspect-oriented languages climbs up the “hill of
complity” by introducing more and more specialized language constructs in order to “patch” the
original defciencies of procedural and object-oriented languages. This hill of critypie an unde-

sired hurden for language designers and implementors as well as for language users.

compleity

A # concepts,

keywords,

size of lang. desgr

aspect-oriented

advanced flexibility,
procedural extensibility,
procedural expressieness,

» usefulness

Figure 1: Hill of complgity

From a strictly conceptual point of wethis manifold of procedures is highly redundant: methods
and constructors dekd in classes are dispensable becausedidd alvays be ddahed in aspects;
method and constructor bodies are dispensable because their codewaysdal dahed as advice;
before and after advice (the latter in its thregants) are dispensable becausg #re just special
cases of around advice (callipgpceed at the end resp. ganing of the advice, appropriately em-
bedded in @y /catch block if necessary to distinguish the threeiants of after advice). After these
conceptual reductions, around adviee e, the possibility to freely\erride an &isting “proceduré,
either with completely ne code (that does not caltoceed) or with code that augments the original
code (by calling the latter vigroceed) — remains as one of thessential(i. e., really necessary) pro-
cedure catgories. (This goes in line with the statement that “dynamically scoped functions are the
essence of @P” [4].)

It turns out, hwever, that the potential for conceptual reductions is still mba@sted: By empio
ing dynamic type testsnétanceof operator) in an around advice, a programmer is able to emulate
the standard dynamic method dispatchviated by the base languagevdapor ary other dispatch
stratgy he likes) by &ecuting the advice code only if the dynamic type of the current object is a par
ticular subtype of its static type (or if some other arbitrary condition isied)isfnd simply calpro-
ceed otherwise. This means in consequence that the specialidethldispatch stragy for methods
is dispensable from a purely conceptual point ofvyviaus remaing the essential dérence between
statically and dynamically bound method®.j.between static and instance methods.

Similar considerations can be applied to data structures:idats ih classes are dispensable because
they are just a special case of intype feld declarations in aspectsakén to the gtreme, classes can
always be declared with empty bodies, because their adtis,fconstructors, and methods can be de-
clared more modularly and Hibly in aspects.

2. Suggestion

Given these obseations, the basic suggestion of this paper is to go back to the starting point of pro-
cedural programming languages amtead them into a diérent direction in order to creaéelvanced
procedurl languayes which are signitantly simpler than aspect-oriented languages whiierinf
comparable xpressveness and fhability (cf. Fig. 1).

In particular replacing simple, statically bound procedures with arbitranigrradable dynamic
procedues(roughly comparable to around adviceyes (with some additional syntactic sugvhich
is not essential) the whole range of dynamic dispatch gieateisually found in object-oriented lan-
guages (single, multiple, andea predicate dispatch [2, 5]) plus the additional concept of advice (be-
fore, after and around) introduced by aspect-oriented languagegertieless, dynamic procedures
remain a single, well-defed concept which is in noay entangled with data structures, class hierar
chies, and the likand therefore is hardly more complhan traditional procedures.

Similarly, replacing simple record typesuirag a fxed set of ields with modularly etensibleopen
typesand attributes (roughly comparable to empty classeseaded by intetype feld declarations)
covers classes and intades, ield declarations in classes and aspects, multiple inheritance and sub-
type polymorphism, plus intéype parent declarations and advice basedebnandset pointcuts
(since reading and writing attrites of open types is implicitly done vigeoridable dynamic proce-
dures). Agin, open types constitute a single, welliged concept which is little more compléan
traditional record types.

Finally, preserving resp. (re-)introducing tiheoduleconcept of modern procedural languages with
clearly deined import/gport interices and a strict separation of modulenitedns and implementa-
tions [12], proides perfect support for encapsulation and information hidivey) #r applications
where sophisticated concepts such as nested or friend classes are needed ilangdages [6, 11].

3. An Example of Open Types and Dynamic Procedures

This section presents a briefaenple of open types and dynamic procedureé&dvanced C.A | ittle
software library for the representation andlaation of arithmetic xpressions shall be ddoped.

We dart by deining some open types with associated aiteb.

/I General expression.

type Expr;

Il Constant expression.

type Const;

conv Const —> Expr; // Const is convertable to Expr, i. e. a subtype.

attr val : Const —> int; /I Value of constant expression.

/I Binary expression.

type Binary;

conv Binary —> Expr; // Binary is a subtype of Expr, too.

attr op : Binary —> char; /I Operator and

attr left : Binary —> Expr; Il left and

attr right : Binary —> Expr; /I right operand of binary expression.

Then, a dynamic procedure (giobal virtual functionin the nomenclature of C/C++) calledal is
defined to compute thealue of an gpression.

/I Evaluate constant expression.
Il The static type of x is Expr, but this "branch" of eval
Il is executed only if its dynamic type is Const.

virtual int eval (Expr x : Const) {
return x@val; // @ is the attribute access operator
/I similar to the dot operator in other languages.

}

/I Evaluate binary expression.
/Il This branch is executed if x's dynamic type is Binary.
virtual int eval (Expr x : Binary) {
switch (x@op) {
case '+ return eval(x@left) + eval(x@right);
case '—: return eval(x@left) — eval(x@right);
case '*; return eval(x@left) * eval(x@right);
case 'I': return eval(x@left) / eval(x@right);
}
}

In a later stage of the ddopment, we detect that wevwaforgotten to implement the remainder oper
ator % We fix this in a completely modularay (i.e., without the need to touch or recompile the
above awde) by adding another branchesfl overiding the preious one if the additional condition
X@op=="%" is satisied.

I Evaluate remainder expression.

I ' This branch is executed if X's dynamic type is Binary

/I and the condition x@op == "%’ holds.

virtual int eval (Expr x : Binary) if (x@op =="%") {
return eval(x@left) % eval(x@right);

}

For a particular application of the libraryve might want divisions by zero to return a special nul-v
ue (represented, @., by the smallestvailable integer \alue) that propaages through all arithmetic
operations (similar to the notion of “not a number”ided by IEEE 754 floating point arithmetics).
This can be achied, agin in a completely modular ay, by introducing the folleing additional
branches oéval .

/I Special null value.
const int null = INT_MIN;

/I Catch divisions by zero.

virtual int eval (Expr x : Binary) if (x@op =="/" || x@op =="%") {
if (eval(x@right) == 0) return null;
else return virtual(); // Call previous branch.

}

/I Catch null-valued operands.

virtual int eval (Expr x : Binary) {
if (eval(x@left) == null || eval(x@right) == null) return null;
else return virtual(); // Call previous branch.

}

Note that the order in which the branches ar@nddfis crucial in thisxample: Since the last branch
— which will be tried frst when the function is woked — catches null-alued operands, the second
last branch will only be tried if both operands are not null and so does not need to repeat this test.

4. Application to Operating Systems

Even though adanced procedural languages are intended to be general-purpose programming lan-
guages, their application to operating systemgldpment might be particularly interesting since
mary of these systems are still implemented in traditional procedural languages (C in particular).
Moving, e.g., from C to anAdvanced C” dfering open types and dynamic functions should be much
more smooth than shifting to an object-orientedvenespect-oriented language, since the basic pro-
gramming paradigm remains the same. Furthermore, by interpreting standard C function as a
dynamic function andvery standard C struct as an open type with some initially associatedtatirib

it is possible to turnxasting source code into flély extensible code at a glance, by simply recompil-

ing it. With some system-dependent larkricks it is gen possible to turn standard library functions

to dynamic functions withoutven recompiling them.

Operating systems, kkoftware systems in general, usuallolee over time. Taking Unix and its
dervatives & a f/pical example, this system started as a rather small and comprehensible system of-
fering a fav basic system calls which implemented & fundamental concepts. @vthe years and
decades, it has gsm into a lage and complesystem ofering dozens of additional system calls im-
plementing a laye number of adanced concepts.

When using coventional programming languages, the introduction of eagh comcept typically
requires moditations to numerousxisting functions in addition to implementingméunctions. Us-
ing open types and dynamic functions insteddrsfat least the chance to be able to implement ne
functionality in a trulymodularway by grouping nev functions and necessary redéfons of &ist-
ing functions together in a singlewenit of code.

To gve a concrete gample, the introduction ghandatoryife locking into Unix required modita-
tions to the implementation ofveeal existing system calls (such apen, read , andwrite) to make
them respecadvisory lo&s on a fle (a concept that has been introduced earlier) as mandatory if the
file’s access permission bits contain an otherwise meaningless combination. Furthermore, this particu-
lar combination of access permissions has to be treated specially at other places of the gystam, e.
not performing the standard action of resetting the “set group IDemutégon” bit when such dlé is
overwritten. By emplging dynamic functions, moddations such as these can be implemented with-
out touching or recompilingxésting source code by simplweriding existing functions with ne
functions that perform additional tests before calling theivipus implementation or signalling an
error such as “lock violation” if necessary

5. Conclusion

Advanced procedural programming languagesHa&en suggested as an altewvatiirection to &-

tend traditional procedural languages to m#iem more flgible and useful. In contrast to object-
oriented and aspect-oriented languages, which combiniging concepts of modules, data struc-
tures, and procedures into classes while at the same time introducing numerous additional concepts,
advanced procedural languages retain these baslidirig blocks as orthogonal concepts which are

only slightly extended to achie the primary aim of modulaxéensibility.

Even though aiffst version of an Advanced C” (that is actually being implemented as a language e
tension for C++ to get for free some of the abed features of C++, such as templates aadbad-

ing of functions and operators) has been used successfully to implement some small to medium-sized
programs (and there are also implementatioatiadle for dynamic procedures in Oberon and dy-
namic class methods invda[7, 8]), it is too early yet to respectably report aboyiegience andval-

uation results. Of course, dynamic procedures are lésgent at run time than statically bound pro-
cedures becauseaey explicit or implicit delegation of a call to the préous branch of the procedure

is effectively another procedure call, at least when implemented straiglafdiyvwithout ay opti-
mizations. Furthermore, inlining of procedure calls becomes impossible if procedures can be freely re-

defined elsehere. Negertheless, the performance penalty encountered appears to be tolerable in prac-
tice if the concept is used reasonably

It is often agued that the possibility to freely redef procedures gwhere might quickly lead to
incomprehensible code because this possibility might indeedusedio completely change the be-
haviour of everything in a system. Heever, the limited practical)perience gined so dr suggests
that the opposite is true, because when applied with care this possibiiygsrthe unique ability to
group related code together at a single place instead of needing to disperse it throughout a whole sys-
tem. By that means, it is possible tovélep and understand a system incrementallyetihat the
basic functionality of the system is correct, it is possible to reason aboxiesiens separately in a
modular vay.

References

[1] A. V. Aho, J. E. HopcroftData Structues and AlgorithmsAddison-Wesley, Reading, MA, 1983.

[2] C. Chambers, WChen: “Eficient Multiple and Predicate Dispatching.” i@onfeence on Ob-
ject-Oriented Pogramming Systems, Languges, and Applications (OOPSLA '199®erver, CO,
November 1999)ACM SIGPLAN Notices84 (10) October 1999, 23@55.

[3] C. Clifton, G. T. Learens, C. Chambers,. Millstein: “MultiJava: Modular Open Classes and
Symmetric Multiple Dispatch for ¥a.” In: Proc. 2000 £M SIGPLAN Confon Object-Oriented
Programming Systems, Languges and Applications (OOPSLA '00jMinneapolis, MN, October
2000).ACM SIGPLAN Notices35 (10) October 2000, 13045.

[4] P. Costanza: “Dynamically Scoped Functions as the Essenc®©8f ACM SGPLAN Notices
38 (8) August 2003, 2986.

[5] M. Ernst, C. Kaplan, C. Chambers: “Predicate Dispatching: Ai&thifheory of Dispatch.” In:
E. Jul (ed.)ECOOP’98—O0bject-Oriented Psgramming(12th European Conference; Brussels, Bel-
gium, July 1998; Proceedings). Lecture Notes in Computer Science 1445, Spariggr Berlin,
1998, 186-211.

[6] J. Gosling, B. Jg, G. Seele:The Ava Languge $eciication. Addison-Veslg/, Reading, MA,
1996.

[7] C.Heinlein: Vertical, Horizontal, and Behavioat Extensibility of Softwar S/stemsNr. 2003-06,
Ulmer Informatik-Berichte, &kultat fir Informatik, Uniersitat Ulm, July 2003.
http://www informatik.uni-ulm.de/pw/berichte/

[8] C. Heinlein: “Dynamic Class Methods in\@a’ In: Net.ObjectDays 2003.agungsband(Erfurt,
German, September 2003). tranSIT GmbH, llmenau, 2003, ISBN 3-9808628-2-82295—

[9] G.Kiczales, E. Hilsdale, J. Hugunin, Meksten, J. &m, W G. Griswold: “An Overview of As-
pectd.” In: J. Linds&v Knudsen (ed.ECOOP 2001-Object-Oriented Psgramming(15th European
Conference; Budapest, Huarg, June 2001; Proceedings). Lecture Notes in Computer Science 2072,
SpringerVerlag, Berlin, 2001, 327353.

[10] D.L. Parnas: “On the Criteria to Be Used in Decomposing Systems into ModGlesifhunica-
tions of the &M 15 (12) December 1972, 1058658.

[11] B. Stroustrup:The C++ Piogramming Languge (Special Edition). Addison-®éle/, Reading,
MA, 2000.

[12] N. Wirth: Programming in Modula-ZFourth Edition). Springe¥erlag, Berlin, 1988.

