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1. Introduction

Today’s programming languages, in particular aspect-oriented languages such as AspectJ [8], have re-
ceived a considerable degree of complexity, making it both hard to learn their “vocabulary” (i. e., sim-
ply know all concepts and constructs offered by the language) and to “fluently speak” them (i.e., suc-
cessfully apply these concepts and constructs in daily programming). In contrast, traditional procedu-
ral languages, such as Pascal or C, provided just two basic building blocks:data structures(records in
particular) andproceduresoperating on them [1]. Modern procedural languages, such as Modula-2 or
Ada, added the concept ofmodulesto support encapsulation and information hiding [9]. In object-
oriented languages such as Eiffel, Java, or C++, these separate and orthogonal entities have been com-
bined intoclasseswhich offer subtype polymorphism, inheritanceof data structures and procedures
(which are usually calledmethodsthere), anddynamic bindingof procedures as additional basic con-
cepts.

Even though object-oriented languages support the construction of software that is usually more
flexible, extensible, and reusable than traditional “procedural software,” i t soon turned out that many
desirable properties are still missing. For example,modular extensibility(i. e., the ability to extend an
existing system without modifying or recompiling its source code) is limited to adding new
(sub)classes to a class hierarchy, while adding new operations (methods) to existing classes is impos-
sible. Similarly, retroactively extending or modifying the behaviour of operations is infeasible. A great
deal of research efforts have been expended in the past years to overcome these limitations by provid-
ing even more new concepts, e.g., open classes [3] or advice and inter-type member declarations in
aspect-oriented languages [8], to name only a few.

Even though the set of these additional concepts is “sufficient” (in the sense that they indeed solve
the problems encountered with object-oriented languages), the question arises whether they are really
“necessary” (in the sense that a smaller or simpler set of concepts would not be sufficient). Using As-
pectJ as an extreme example, this language provides eight more or less different kinds of “proce-
dures,” i . e., named blocks of executable code: static methods, instance methods and constructors de-
fined in classes (as in the base language Java), plus instance methods and constructors defined as in-
ter-type members in aspects, plus before, after, and around advice (still neglecting the distinction be-
tween “after returning,” “ after throwing,” and general “after” advice).

Figure 1 illustrates this observation graphically: The road leading from procedural languages via ob-
ject-oriented languages to “conceptually sufficient” aspect-oriented languages climbs up the “hill of
complexity” by introducing more and more specialized language constructs in order to “patch” the
original deficiencies of procedural and object-oriented languages. This hill of complexity is an unde-
sired burden for language designers and implementors as well as for language users.
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Figure 1: Hill of complexity

From a strictly conceptual point of view, this manifold of procedures is highly redundant: methods
and constructors defined in classes are dispensable because they could always be defined in aspects;
method and constructor bodies are dispensable because their code could always be defined as advice;
before and after advice (the latter in its three variants) are dispensable because they are just special
cases of around advice (callingproceed at the end resp. beginning of the advice, appropriately em-
bedded in atry /catch block if necessary to distinguish the three variants of after advice). After these
conceptual reductions, around advice −− i. e., the possibility to freely override an existing “procedure,”
either with completely new code (that does not callproceed ) or with code that augments the original
code (by calling the latter viaproceed ) −− remains as one of theessential(i. e., really necessary) pro-
cedure categories. (This goes in line with the statement that “dynamically scoped functions are the
essence of AOP” [4].)

It turns out, however, that the potential for conceptual reductions is still not exhausted: By employ-
ing dynamic type tests (instanceof operator) in an around advice, a programmer is able to emulate
the standard dynamic method dispatch provided by the base language Java (or any other dispatch
strategy he likes) by executing the advice code only if the dynamic type of the current object is a par-
ticular subtype of its static type (or if some other arbitrary condition is satisfied) and simply callpro-
ceed otherwise. This means in consequence that the specialized built-in dispatch strategy for methods
is dispensable from a purely conceptual point of view, thus removing the essential difference between
statically and dynamically bound methods, i.e., between static and instance methods.

Similar considerations can be applied to data structures: data fields in classes are dispensable because
they are just a special case of inter-type field declarations in aspects. Taken to the extreme, classes can
always be declared with empty bodies, because their data fields, constructors, and methods can be de-
clared more modularly and flexibly in aspects.
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2. Suggestion

Given these observations, the basic suggestion of this paper is to go back to the starting point of pro-
cedural programming languages and extend them into a different direction in order to createadvanced
procedural languages which are significantly simpler than aspect-oriented languages while offering
comparable expressiveness and flexibility (cf. Fig. 1).

In particular, replacing simple, statically bound procedures with arbitrarily overridable dynamic
procedures(roughly comparable to around advice) covers (with some additional syntactic sugar which
is not essential) the whole range of dynamic dispatch strategies usually found in object-oriented lan-
guages (single, multiple, and even predicate dispatch [2, 5]) plus the additional concept of advice (be-
fore, after, and around) introduced by aspect-oriented languages. Nevertheless, dynamic procedures
remain a single, well-defined concept which is in no way entangled with data structures, class hierar-
chies, and the like and therefore is hardly more complex than traditional procedures.

Similarly, replacing simple record types having a fixed set of fields with modularly extensibleopen
typesand attributes(roughly comparable to empty classes extended by inter-type field declarations)
covers classes and interfaces, field declarations in classes and aspects, multiple inheritance and sub-
type polymorphism, plus inter-type parent declarations and advice based onget andset pointcuts
(since reading and writing attributes of open types is implicitly done via overridable dynamic proce-
dures). Again, open types constitute a single, well-defined concept which is little more complex than
traditional record types.

Finally, preserving resp. (re-)introducing themoduleconcept of modern procedural languages with
clearly defined import/export interfaces and a strict separation of module definitions and implementa-
tions [11], provides perfect support for encapsulation and information hiding, even for applications
where sophisticated concepts such as nested or friend classes are needed in today’s languages [6, 10].

3. An Example of Open Types and Dynamic Procedures

This section presents a brief example of open types and dynamic procedures in “Advanced C.” A l ittle
software library for the representation and evaluation of arithmetic expressions shall be developed.

We start by defining some open types with associated attributes.

// General expression.
type Expr;

// Constant expression.
type Const;

// Const is convertable to Expr, i. e., a subtype of Expr.
conv Const −> Expr;

// The value of a constant expression is an attribute of Const.
attr val : Const −> int;

// Binary expression.
type Binary;
conv Binary −> Expr; // Binary is a subtype of Expr, too.
attr op : Binary −> char; // Operator,
attr left : Binary −> Expr; // left and
attr right : Binary −> Expr; // right operand of binary expression.
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Then, a dynamic procedure (orglobal virtual functionin a C/C++-like nomenclature) calledeval is
defined to compute the value of an expression.

// Evaluate constant expression.
virtual int eval (Expr x : Const) {

return x@val; // @ is the attribute access operator
// that is very similar to the dot operator in other languages.

}

// Evaluate binary expression.
virtual int eval (Expr x : Binary) {

switch (x@op) {
case ’+’: return eval(x@left) + eval(x@right);
case ’−’: return eval(x@left) − eval(x@right);
case ’*’: return eval(x@left) * eval(x@right);
case ’/’: return eval(x@left) / eval(x@right);
}

}

In a later stage of the development, we detect that we have forgotten to implement the remainder oper-
ator %. We fix this in a completely modular way (i.e., without the need to touch or recompile the
above code) by adding another “branch” ofeval overriding the previous one if the conditionx@op
== ’%’ is satisfied.

// Evaluate remainder expression.
virtual int eval (Expr x : Binary) if (x@op == ’%’) {

return eval(x@left) % eval(x@right);
}

For a particular application of the library, we want divisions by zero to return a special null value (rep-
resented by the smallest available integer value) that propagates through all arithmetic operations.
This can be achieved, again in a completely modular way, by introducing the following additional
branches ofeval .

// Special null value.
const int null = INT_MIN;

// Catch divisions by zero.
virtual int eval (Expr x : Binary) if (x@op == ’/’ || x@op == ’%’) {

if (eval(x@right) == 0) return null;
else return virtual(); // Call previous branch.

}

// Catch null−valued operands.
virtual int eval (Expr x : Binary) {

if (eval(x@left) == null || eval(x@right) == null) return null;
else return virtual(); // Call previous branch.

}
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4. Dynamicity of Open Type Instances

Instances of open types differ from instances of classes in object-oriented languages such as Java or
C++ in two ways.

First, their set of attributes is dynamic, again in two ways: Because the attributes of a particular type
can be defined in different modules, the set ofall attributes is unknown when compiling a single mod-
ule. Furthermore, since modules containing attribute definitions might be loaded dynamically at run
time, the set of all attributes belonging to a type is even unknown at link or program start time. To
support this kind of dynamicity, objects of an open type might be represented as dynamic lists of at-
tribute/value pairs. (However, it is possible to devise more time- and space-efficient representations,
too.) If an attribute is accessed that is not present yet, a well-defined null value is returned for read ac-
cesses, while a new attribute/value pair is added to the list for write accesses.

Second, the dynamic type of an object, which is equal to its static type immediately after creation,
can be changed at run time. For example, an object initially created as a person might later be special-
ized to a student or an employee, without losing its unique identity or its current attribute values. It is
ev en possible for an object to possess multiple dynamic types, e.g., for a person to become a student
and an employee at the same time, even if no corresponding static type representing an employed stu-
dent has been defined. Because procedures are not directly associated with types or objects, such ma-
nipulations cannot lead to “message not understood” or other run time type errors, i.e., the system re-
mains statically type-safe.
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