APPLE:
Advanced Procedural Programming L anguage Elements

Christian Heinlein
Dept. of Computer Structess
University of Ulm
Germany
heinlein@informatik.uni-ulm.de

Position Rper for the ECOOP 2004dfkshop on
Object-Oriented Language Engineering for the Pos-ea

1. Introduction

Today’s programming languages, in particular aspect-oriented languages such as Aspecté |8}, ha
ceived a mnsiderable dgree of compleity, making it both hard to learn their 8eatulary” (i. ., sim-

ply know al concepts and constructsfefed by the language) and to “fluently speak” thera.(isuc-
cessfully apply these concepts and constructs in daily programming). In contrast, traditional procedu-
ral languages, such aageal or C, praded just two basic iilding blocks:data structues(records in
particular) andproceduesoperating on them [1]. Modern procedural languages, such as Modula-2 or
Ada, added the concept ofodulesto support encapsulation and information hiding [9]. In object-
oriented languages such asfélifJava, or C++, these separate and orthogonal entitiee leen com-
bined intoclasseswhich offer subtype polymorphisninheritanceof data structures and procedures
(which are usually callethethodghere), andlynamic bindingof procedures as additional basic con-
cepts.

Even though object-oriented languages support the construction ofsofthat is usually more
flexible, extensible, and reusable than traditional “procedural so#{nt soon turned out that mgn
desirable properties are still missingrexample,modular etensibility (i. e., the ability to &tend an
existing system without modifying or recompiling its source code) is limited to addimg ne
(sub)classes to a class hieratohhile adding nev operations (methods) txisting classes is impos-
sible. Similarly retroactvely extending or modifying the bekieur of operations is infeasible. A great
deal of research feirts hare keen &pended in the past years teecome these limitations by priol-
ing even more ne&v concepts, ., open classes [3] or advice and iftigre member declarations in
aspect-oriented languages [8], to name onlya fe

Even though the set of these additional concepts ifi tgeriit” (in the sense that théndeed sole
the problems encountered with object-oriented languages), the question arises whetnerrealy
“necessary” (in the sense that a smaller or simpler set of concepls mot be sdifcient). Using As-
pect] as anxéreme g@ample, this language prides eight more or less thfent kinds of “proce-
dures;i.e, named blocks ofxecutable code: static methods, instance methods and constructors de-
fined in classes (as in the base languaga),Jalus instance methods and constructorinddfas in-
tertype members in aspects, plus before, afteat around advice (still ggecting the distinction be-
tween “after returning,’ after thraving,” and general “after” advice).

Figure 1 illustrates this obseton graphically: The road leading from procedural languages via ob-
ject-oriented languages to “conceptuallyfisiént” aspect-oriented languages climbs up the “hill of
complity” by introducing more and more specialized language constructs in order to “patch” the
original defciencies of procedural and object-oriented languages. This hill of critypie an unde-

sired hurden for language designers and implementors as well as for language users.

compleity

A # concepts,

keywords,

size of lang. desgr

aspect-oriented

advanced flexibility,
procedural extensibility,
procedural expressieness,

» usefulness

Figure 1: Hill of complgity

From a strictly conceptual point of wethis manifold of procedures is highly redundant: methods
and constructors dekd in classes are dispensable becausedidd alvays be ddahed in aspects;
method and constructor bodies are dispensable because their codewaysdal dahed as advice;
before and after advice (the latter in its thregants) are dispensable becausg #re just special
cases of around advice (callipgpceed at the end resp. ganing of the advice, appropriately em-
bedded in @y /catch block if necessary to distinguish the threeiants of after advice). After these
conceptual reductions, around adviee e, the possibility to freely\erride an &isting “proceduré,
either with completely ne code (that does not caltoceed) or with code that augments the original
code (by calling the latter vigroceed) — remains as one of thessential(i. e., really necessary) pro-
cedure catgories. (This goes in line with the statement that “dynamically scoped functions are the
essence of @P” [4].)

It turns out, hwever, that the potential for conceptual reductions is still mba@sted: By empio
ing dynamic type testsnétanceof operator) in an around advice, a programmer is able to emulate
the standard dynamic method dispatchviated by the base languagevdapor ary other dispatch
stratgy he likes) by &ecuting the advice code only if the dynamic type of the current object is a par
ticular subtype of its static type (or if some other arbitrary condition isied)isfnd simply calpro-
ceed otherwise. This means in consequence that the specialidethldispatch stragy for methods
is dispensable from a purely conceptual point ofvyviaus remaing the essential dérence between
statically and dynamically bound method®.j.between static and instance methods.

Similar considerations can be applied to data structures:idats ih classes are dispensable because
they are just a special case of intype feld declarations in aspectsakén to the gtreme, classes can
always be declared with empty bodies, because their adtis,fconstructors, and methods can be de-
clared more modularly and Hibly in aspects.

2. Suggestion

Given these obseations, the basic suggestion of this paper is to go back to the starting point of pro-
cedural programming languages amtead them into a diérent direction in order to creaéelvanced
procedurl languayes which are signitantly simpler than aspect-oriented languages whiierinf
comparable xpressveness and fhability (cf. Fig. 1).

In particular replacing simple, statically bound procedures with arbitranigrradable dynamic
procedues(roughly comparable to around adviceyes (with some additional syntactic sugvhich
is not essential) the whole range of dynamic dispatch gieateisually found in object-oriented lan-
guages (single, multiple, andea predicate dispatch [2, 5]) plus the additional concept of advice (be-
fore, after and around) introduced by aspect-oriented languagegertieless, dynamic procedures
remain a single, well-defed concept which is in noay entangled with data structures, class hierar
chies, and the likand therefore is hardly more complhan traditional procedures.

Similarly, replacing simple record typesuirag a fxed set of ields with modularly etensibleopen
typesand attributes (roughly comparable to empty classeseaded by intetype feld declarations)
covers classes and intades, ield declarations in classes and aspects, multiple inheritance and sub-
type polymorphism, plus intéype parent declarations and advice basedebnandset pointcuts
(since reading and writing attrites of open types is implicitly done vigeoridable dynamic proce-
dures). Agin, open types constitute a single, welliged concept which is little more compléan
traditional record types.

Finally, preserving resp. (re-)introducing tiheoduleconcept of modern procedural languages with
clearly deined import/gport interices and a strict separation of modulenitedns and implementa-
tions [11], proides perfect support for encapsulation and information hidiveg #r applications
where sophisticated concepts such as nested or friend classes are needed ilangdages [6, 10].

3. An Example of Open Types and Dynamic Procedures

This section presents a briefaenple of open types and dynamic procedureé&dvanced C.A | ittle
software library for the representation andlaation of arithmetic xpressions shall be ddoped.

We dart by deining some open types with associated aiteb.

/I General expression.
type Expr;

Il Constant expression.
type Const;

/I Const is convertable to Expr, i. e., a subtype of Expr.
conv Const —> Expr;

/I The value of a constant expression is an attribute of Const.
attr val : Const —> int;

/I Binary expression.

type Binary;

conv Binary —> Expr; // Binary is a subtype of Expr, too.

attr op : Binary —> char; // Operator,

attr left : Binary —> Expr; // left and

attr right : Binary —> Expr; // right operand of binary expression.

Then, a dynamic procedure (global virtual functionin a C/C++-like romenclature) calledval is
defined to compute thealue of an gpression.

I Evaluate constant expression.
virtual int eval (Expr x : Const) {
return x@val; // @ is the attribute access operator
/I that is very similar to the dot operator in other languages.

}

I Evaluate binary expression.

virtual int eval (Expr x : Binary) {
switch (x@op) {
case '+'": return eval(x@left) + eval(x@right);
case '-': return eval(x@left) — eval(x@right);
case "' return eval(x@left) * eval(x@right);
case 'I": return eval(x@left) / eval(x@right);
}

}

In a later stage of the ddopment, we detect that wevaforgotten to implement the remainder oper
ator % We fix this in a completely modular ay (i.e., without the need to touch or recompile the
abore mde) by adding another “branch” efal overiding the preious one if the conditiom@op
=="%" is satisied.

/I Evaluate remainder expression.

virtual int eval (Expr x : Binary) if (x@op =="%") {
return eval(x@left) % eval(x@right);

}

For a particular application of the librarye want dvisions by zero to return a special nudlwe (rep-
resented by the smallestadable integger value) that propages through all arithmetic operations.
This can be achied, agin in a completely modular ay, by introducing the folleing additional
branches oéval .

/I Special null value.
const int null = INT_MIN;

/I Catch divisions by zero.

virtual int eval (Expr x : Binary) if (x@op =="I" || x@op =="%") {
if (eval(x@right) == 0) return null;
else return virtual(); // Call previous branch.

}

/I Catch null-valued operands.

virtual int eval (Expr x : Binary) {
if (eval(x@left) == null || eval(x@right) == null) return null
else return virtual(); // Call previous branch.

4. Dynamicity of Open Type | nstances

Instances of open types f@if from instances of classes in object-oriented languages suctaag Ja
C++ in two ways.

First, their set of attrilites is dynamic, agn in two ways: Because the atttites of a particular type
can be dehed in diferent modules, the set afl attributes is unknen when compiling a single mod-
ule. Furthermore, since modules containing aitdbdeinitions might be loaded dynamically at run
time, the set of all attriies belonging to a type isam unknown at link or program start timeoT
support this kind of dynamicitybjects of an open type might be represented as dynamic lists of at-
tribute/\alue pairs. (Hwever, it is possible to deise more time- and spacdiefent representations,
too.) If an attrilte is accessed that is not present yet, a weletkhull \alue is returned for read ac-
cesses, while a neattribute/\alue pair is added to the list for write accesses.

Second, the dynamic type of an object, which is equal to its static type immediately after creation,
can be changed at run timerfexample, an object initially created as a person might later be special-
ized to a student or an empée, without losing its unique identity or its current atirénalues. It is
even possible for an object to possess multiple dynamic types, ®r a person to become a student
and an emplgee at the same timeyen if no corresponding static type representing an eggacstu-
dent has been daéd. Because procedures are not directly associated with types or objects, such ma-
nipulations cannot lead to “message not understood” or other run time type eeotbei.system re-
mains statically type-safe.

References
[1] A. V. Aho, J. E. HopcroftData Structues and AlgorithmsAddison-W\éslg/, Reading, MA, 1983.

[2] C. Chambers, WChen: “Eficient Multiple and Predicate Dispatching.” i@onfeence on Ob-
ject-Oriented Pogramming Systems, Languges, and Applications (OOPSLA '199®erver, CO,
November 1999)ACM SIGPLAN Notices34 (10) October 1999, 23@55.

[3] C. Clifton, G. T. Learens, C. Chambers,. Millstein: “MultiJavac Modular Open Classes and
Symmetric Multiple Dispatch for ya.” In: Proc. 2000 £M SIGPLAN Confon Object-Oriented
Programming Systems, Languges and Applications (OOPSLA '00jMinneapolis, MN, October
2000).ACM SGPLAN Notices35 (10) October 2000, 13045.

[4] P. Costanza: “Dynamically Scoped Functions as the Essenc®©8f ACM SGPLAN Notices
38 (8) August 2003, 29866.

[5] M. Ernst, C. Kaplan, C. Chambers: “Predicate Dispatching: Aiéthifheory of Dispatch.” In:
E. Jul (ed.)ECOOP’98—O0bject-Oriented Psgramming(12th European Conference; Brussels, Bel-
gium, July 1998; Proceedings). Lecture Notes in Computer Science 1445, Spariggr Berlin,
1998, 186-211.

[6] J. Gosling, B. Jg, G. Seele:The Ava Languge $eciication. Addison-Veslg/, Reading, MA,
1996.

[7] C. Heinlein:Vertical, Horizontal, and Behavioait Extensibility of Softwar S/stemsNr. 2003-06,
Ulmer Informatik-Berichte, &kultat fir Informatik, Uniersitat Ulm, July 2003.
http://wwwinformatik.uni-ulm.de/pw/berichte/

[8] G.Kiczales, E. Hilsdale, J. Hugunin, Meksten, J. &m, W G. Griswold: “An Overview of As-
pectd.” In: J. Lindstiv Knudsen (ed.)ECOOP 2001+-Object-Oriented Psgramming(15th European

Conference; Budapest, Huarg, June 2001; Proceedings). Lecture Notes in Computer Science 2072,
SpringefVerlag, Berlin, 2001, 327353.

[9] D. L. Parnas: “On the Criteria to Be Used in Decomposing Systems into ModGleshinunica-
tions of the £M 15 (12) December 1972, 10536858.

[10] B. Stroustrup:The C++ Piogramming Languge (Special Edition). Addison-¥sle/, Reading,
MA, 2000.

[11] N. Wirth: Programming in Modula-ZFourth Edition). Springe¥erlag, Berlin, 1988.

