APPLE:
Advanced Procedural Programming Language Elements

Christian Heinlein

Dept. of Computer Structures, Weisity of Ulm, German
heinlein@informatik.uni-ulm.de

Abstract. Today's programming languages V& receved a @nsiderable de-

gree of compleity, raising the question whether all the conceptyiges are

really necessary to s@wypical programming problems. As an altermatio
object-oriented and aspect-oriented languagesarehd procedural program-
ming languages are suggested, which slightterad the tw basic concepts of
classical procedural language®.j.data structures and procedures operating on
them. By that means, it is possible to design programming languages which are
much simpler to learn and use, whildeoing comparable x@ressieness and
flexibility .

1 Introduction

Today’s programming languages, in particular aspect-oriented languages such as As-
pectd [9], hee receved a mnsiderable dgree of compleity, making it both hard to
learn their “wcahulary” (i. e., simply knav all concepts and constructsfefed by the
language) and to “fluently speak” theme(i, successfully apply these concepts and
constructs in daily programming). In contrast, traditional procedural languages, such
as Riscal or C, pnaded just tvwo basic liilding blocks:data structues (records in
particular) andoroceduesoperating on them [1]. Modern procedural languages, such
as Modula-2 or Ada, added the conceptafdulesto support encapsulation and in-
formation hiding [10]. In object-oriented languages such dslEifva, or C++, these
separate and orthogonal entitiesdn&ieen combined intalassesvhich ofier subtype
polymorphisminheritanceof data structures and procedures (which are usually called
methodshere), andlynamic bindingf procedures as additional basic concepts.

Even though object-oriented languages support the construction oheoftwat is
usually more flzible, extensible, and reusable than traditional “procedural so#iv
it soon turned out that menlesirable properties are still missingarlexample,modu-
lar extensibility(i. e., the ability to etend an gisting system without modifying or re-
compiling its source code) is limited to addingvn@ub)classes to a class hieratch
while adding ne operations (methods) taxisting classes is impossible. Similarly
retroactvely extending or modifying the bekieur of operations is infeasible. A great
deal of research feirts hare keen &pended in the past years teercome these limi-
tations by preiding even more nav concepts, €., open classes [3], or advice and in-
tertype member declarations in aspect-oriented languages [9], to name oaly a fe

Even though the set of these additional concepts idiégiit” (in the sense that
they indeed sole the problems encountered with object-oriented languages), the

question arises whether thare really “necessary” (in the sense that a smaller or sim-
pler set of conceptsauld not be sdifcient). Using Aspect] as arteeme &le,

this language prades eight more or less thfent kinds of “procedurés,. e., named
blocks of e&ecutable code: static methods, instance methods and constructoesidef
in classes (as in the base languag&)J®lus instance methods and constructors de-
fined as intetype members in aspects, plus before, aftet around advice (still ne-
glecting the distinction between “after returninafter thraving,” and general “af-
ter” advice).

Figure 1 illustrates this obsetwon graphically: The road leading from procedural
languages via object-oriented languages to “conceptualficisuit” aspect-oriented
languages climbs up the “hill of compity” by introducing more and more special-
ized language constructs in order to “patch” the originakidefcies of procedural
and object-oriented languages. This hill of comipjeis an undesiredurden for lan-
guage designers and implementors as well as for language users.

compleity

A # concepts,

keywords,

size of lang. desgr

aspect-oriented

object-oriented

flexibility
advanced extensibility;
procedural expressveness,

procedural

» usefulness

Figure 1: Hill of compleity

From a strictly conceptual point of wethis manifold of procedures is highly red-
undant; methods and constructorsimkd in classes are dispensable becausg the
could alvays be defhed in aspects; method and constructor bodies are dispensable be-
cause their code couldvadys be dehed as advice; before and after advice (the latter
in its three ariants) are dispensable because Hre just special cases of around ad-
vice (callingproceed at the end resp. ganing of the advice, appropriately embed-
ded in atry /catch block if necessary to distinguish the thremiants of after ad-

vice). After these conceptual reductions, around advice.-the possibility to freely
overide an eisting “proceduré,either with completely n& code (that does not call
proceed) or with code that augments the original code (by calling the lattgrreia

ceed) — remains as one of thessential(i. e., really necessary) procedure cgiges.

(This goes in line with the statement that “dynamically scoped functions are the
essence of @P”" [4].)

It turns out, hawever, that the potential for conceptual reductions is still not e
hausted: By empiong dynamic type testsnétanceof operator) in an around ad-
vice, a programmer is able to emulate the standard dynamic method dispsaigdoro
by the base languagevada(r ary other dispatch stragiy he likes) by &ecuting the
advice code only if the dynamic type of the current object is a particular subtype of its
static type (or if some other arbitrary condition is satiffand simply calproceed
otherwise. This means in consequence that the specialidédhbdispatch stratgy
for methods is dispensable from a purely conceptual point of thes remaing the
essential dierence between statically and dynamically bound methoels,bietween
static and instance methods.

Similar considerations can be applied to data structures:idits ih classes are dis-
pensable because thare just a special case of intigpe feld declarations in aspects.
Taken to the extreme, classes cannalys be declared with empty bodies, because their
data felds, constructors, and methods can be declared more modularly>ably fle
aspects.

2 Suggestion

Given these obseations, the basic suggestion of this paper is to go back to the start-
ing point of procedural programming languages axtdrel them into a diérent di-
rection in order to crea@dvanced pycedual languayes which are signitantly sim-
pler than aspect-oriented languages whilkerafg comparable xpressieness and
flexibility (cf. Fig. 1).

In particular replacing simple, statically bound procedures with arbitraxiyrrad-
able dynamic pocedues (roughly comparable to around adviceyes (with some
additional syntactic swg which is not essential) the whole range of dynamic dispatch
stratggies usually found in object-oriented languages (single, multiple \encheedi-
cate dispatch [2, 5]) plus the additional concept of advice (before, aftearound)
introduced by aspect-oriented languagesieitbeless, dynamic procedures remain a
single, well-deifhed concept which is in noay entangled with data structures, class
hierarchies, and the kkand therefore is hardly more complthan traditional proce-
dures.

Similarly, replacing simple record typesvirg a fxed set ofields with modularly
extensibleopen typesand attributes (roughly comparable to empty classeseaded
by intertype feld declarations) omrs classes and intades, ield declarations in
classes and aspects, multiple inheritance and subtype polymorphism, phigpater
parent declarations and advice basedyein and set pointcuts (since reading and
writing attributes of open types is implicitly done viaeoridable dynamic proce-

dures). Agin, open types constitute a single, wellkded concept which is little
more complg than traditional record types.

Finally, preserving resp. (re-)introducing theoduleconcept of modern procedural
languages with clearly dekd import/&port interfices and a strict separation of mod-
ule defnitions and implementations [12], pides perfect support for encapsulation
and information hiding, ven for applications where sophisticated concepts such as
nested or friend classes are needed in tedagguages [6, 11].

3 An Example of Open Types and Dynamic Procedures

This section presents a briefagnple of open types and dynamic procedureg\dx “
vanced C. A little software library for the representation andlaation of arithmetic
expressions shall be dgoped.

We gart by deining some open types with associated aitgb.

Il General expression.
type Expr;

/I Constant expression.
type Const;

/I Const is convertable to Expr, i. e. it is a subtype.
conv Const —> Expr;

/' Value of constant expression.
attr val : Const —> int;

/I Binary expression.

type Binary;

conv Binary —> Expr; /I Binary is a subtype of Expr, too.
attr op : Binary —> char; /I Operator and

attr left : Binary —> Expr; I/ left and right

attr right : Binary —> Expr; // operand of binary expression.

Then, a dynamic procedure (giobal virtual functionin the nomenclature of C/C++)
calledeval is defned to compute thealue of an gpression.

/I Evaluate constant expression.
Il The static type of x is Expr, but this "branch" of eval
Il'is executed only if its dynamic type is Const.
virtual int eval (Expr x : Const) {
return x@val; // @ is the attribute access operator
/I similar to the dot operator in other languages.

}

/I Evaluate binary expression.
/I This branch is executed if x's dynamic type is Binary.
virtual int eval (Expr x : Binary) {

switch (x@op) {
case '+'; return eval(x@left) + eval(x@right);
case '-"; return eval(x@left) — eval(x@right);
case "™': return eval(x@left) * eval(x@right);
case 'I': return eval(x@left) / eval(x@right);
}

}

In a later stage of the @@opment, we detect that weveaforgotten to implement the
remainder operatdt We fix this in a completely modularay (i.e., without the need
to touch or recompile the ab® awde) by adding another branchesfal overiding
the previous one if the additional conditiot®op=="%" is satisfed.

/I Evaluate remainder expression.

Il This branch is executed if x's dynamic type is Binary

/I 'and the condition x@op == "%’ holds.

virtual int eval (Expr x : Binary) if (x@op == "'%’) {
return eval(x@left) % eval(x@right);

}

For a particular application of the libraryve might want dvisions by zero to return a
special null alue (represented, @, by the smallestvailable integer \alue) that prop-
agates through all arithmetic operations (similar to the notion of “not a number” de-
fined by IEEE 754 floating point arithmetics). This can be aellieagain in a com-
pletely modular &y, by introducing the follaving additional branches efial .

I Special null value.
constint null = INT_MIN;

/I Catch divisions by zero.
virtual int eval (Expr X : Binary)
if (x@op =="1"|| x@op =="%) {
if (eval(x@right) == 0) return null;
else return virtual(); // Call previous branch.

}

/I Catch null-valued operands.
virtual int eval (Expr x : Binary) {
if (eval(x@left) == null || eval(x@right) == null) {

return null;
}
else {

return virtual(); / Call previous branch.
}

}

Note that the order in which the branches araddfis crucial in this>ample: Since
the last branch-which will be tried frst when the function is woked — catches null-

valued operands, the second last branch will only be tried if both operands are not null
and so does not need to repeat this test.

In contrast to normal object-oriented languages, whekectasses can only be added
as leaf nodes of the class hiergtchew @en types can also be inserted as inner
nodes of the type hierarghFor example, a ne type Atom representing atomicxe
pressions can be dieéd as a subtype &kpr and a supertype @fonst :

/I Atomic expression.
type Atom;

/I Atom is a subtype of Expr.
conv Atom —> Expr;

/I Const is a subtype of Atom.
conv Const —> Atom;

4 An Example from Operating Systems Development

Even though adanced procedural languages are intended to be general-purpose pro-
gramming languages, their application to operating systemngogenent might be
particularly interesting since manof these systems are still implemented in tradition-

al procedural languages (C in particular). ihg, e.g., from C to an Advanced C”
offering open types and dynamic functions should be much more smooth than shifting
to an object-oriented owen aspect-oriented language, since the basic programming
paradigm remains the same. Furthermore, by interpretirg standard C function as

a dynamic function andwery standard C struct as an open type with some initially as-
sociated attribtes, it is possible to turrxisting source code into ftébly extensible

code at a glance, by simply recompiling ititht\some system-dependent latktricks

it is even possible to turn standard library functions to dynamic functions without
even recompiling them.

Operating systems, kkoftware systems in general, usuallyolee over time. Taking
Unix and its derxiatives & a ypical example, this system started as a rather small and
comprehensible systemfefing a fev basic system calls which implemented & fe
fundamental concepts. @wthe years and decades, it hassgrinto a lage and com-
plex system ofering dozens of additional system calls implementing gelaumber
of advanced concepts.

When using coventional programming languages, the introduction of each ne
concept typically requires modiftions to numerouscisting functions in addition to
implementing n& functions. Using open types and dynamic functions instefadsof
at least the chance to be able to implement fumctionality in a trulymodular way
by grouping ne data structures, necessartensions to xisting data structures, we
functions, and necessary reidéfons of &isting functions together in a singlewe
unit of code.

To dgve a moncrete gample, the introduction afmandatory ife locking into Unix
required moditations to the implementation ofveeal existing system calls (such as

open, read , andwrite) to make them respecadvisory lokson a fle (a concept that

has been introduced earlier) as mandatory if lb&sfaccess permission bits contain

an otherwise meaningless combination. Furthermore, this particular combination of
access permissions has to be treated specially in other places of the sygtehy, e.
not performing the standard action of resetting the “set group IDxegutéon” bit

when such aile is overwritten. By emplging dynamic functions, moddations such

as these can be implemented without touching or recompitistirey source code by
simply overriding existing functions with ne functions that perform additional tests
before calling their prdous implementation or signalling an error such as “lock vio-
lation” if necessary

5 Conclusion

Advanced procedural programming languagesgHaen suggested as an altenvti
direction to @&tend traditional procedural languages to smédem more flgible and

useful. In contrast to object-oriented and aspect-oriented languages, which combine
the «isting concepts of modules, data structures, and procedures into classes while at
the same time introducing numerous additional conceptsnadd procedural lan-
guages retain these basiailding blocks as orthogonal concepts which are only
slightly extended to achie te primary aim of modulaxéensibility.

Even though aiffst version of an Advanced C” (that is actually being implemented as
a language xension for C++ to get for free some of the abed features of C++,
such as templates andedoading of functions and operators) has been used success-
fully to implement some small to medium-sized programs (and there are also imple-
mentations ailable for dynamic procedures in Oberon and dynamic class methods in
Java [7, 8]), it is too early yet to respectably report aboytegience andwaluation
results. Of course, dynamic procedures are Idssieaft at run time than statically
bound procedures becauserg explicit or implicit delegation of a call to the pre-
ous branch of the procedure igegetively another procedure call, at least when imple-
mented straightforardly without ag optimizations. Furthermore, inlining of proce-
dure calls becomes impossible if procedures can be freelymedelsavhere. Neer-
theless, the performance penalty encountered appears to be tolerable in practice if the
concept is used reasonably

It is often agued that the possibility to freely redef procedures gwhere might
quickly lead to incomprehensible code because this possibility might indeed be
alused to completely change the babar of everything in a system. Heever, the
limited practical &perience gined so dr suggests that the opposite is true, because
when applied with care this possibility pides the unique ability to group related
code together in a single place instead of needing to disperse it throughout a whole
system. By that means, it is possible tedlgp and understand a system incremental-
ly: Given that the basic functionality of the system is correct, it is possible to reason
about its gtensions separately in a modulaayw

References

[1] A. V. Aho, J. E. HopcroftData Structues and AlgorithmsAddison-Wesle/, Reading,
MA, 1983.

[2] C. Chambers, WChen: “Eficient Multiple and Predicate Dispatching.” lbonfeence on
Object-Oriented Rygramming Systems, Languges, and Applications (OOPSLA '199@en-
ver, CO, November 1999)ACM SIGPLAN Notices34 (10) October 1999, 23@55.

[3] C. Clifton, G. T Leavens, C. Chambers,. Millstein: “MultiJava: Modular Open Classes
and Symmetric Multiple Dispatch forvi” In: Proc. 2000 £M SIGPLAN Confon Object-
Oriented Pogramming Systems, Langues and Applications (OOPSLA '00)Minneapolis,
MN, October 2000)ACM SIGPLAN Notices35 (10) October 2000, 13045.

[4] P. Costanza: “Dynamically Scoped Functions as the Essenc®Bf ACM SSGPLAN No-
tices38 (8) August 2003, 2986.

[5] M. Ernst, C. Kaplan, C. Chambers: “Predicate Dispatching: Ai&thiTheory of Dis-
patch.” In: E. Jul (ed.)ECOOP’'98—O0bject-Oriented Psgramming(12th European Confer

ence; Brussels, Belgium, July 1998; Proceedings). Lecture Notes in Computer Science 1445,
SpringefVerlag, Berlin, 1998, 186211.

[6] J.Gosling, B. Jg, G. Steele:The &ava Languge $ecifcation. Addison-Wslg/, Reading,
MA, 1996.

[7] C. Heinlein: Vetical, Horizontal, and Behavioat Extensibility of Softwar S/stems Nr.
2003-06, Ulmer Informatik-Berichte, akultat fur Informatik, Uniersitat Ulm, July 2003.
http://www.informatik.uni-ulm.de/pw/berichte/

[8] C. Heinlein: “Dynamic Class Methods in\@’ In: Net.ObjectDays 2003.agungsband
(Erfurt, Germaw, September 2003). tranSIT GmbH, limenau, 2003, ISBN 3-9808628-2-8,
215-229.

[9] G.Kiczales, E. Hilsdale, J. Hugunin, Meksten, J. 8m, W G. Griswold: “An Overvien

of Aspect].” In: J. Lindskv Knudsen (ed.)ECOOP 2001--Object-Oriented Psgramming
(15th European Conference; Budapest, Hupglune 2001; Proceedings). Lecture Notes in
Computer Science 2072, Springéerlag, Berlin, 2001, 327353.

[10] D.L. Parnas: “On the Criteria to Be Used in Decomposing Systems into ModGles”
munications of the @M 15 (12) December 1972, 1058858.

[11] B. Stroustrup:The C++ Piogramming Languge (Special Edition). Addison-@éley,
Reading, MA, 2000.

[12] N.Wirth: Programming in Modula-ZFourth Edition). Springe¥erlag, Berlin, 1988.

