
APPLE:
Advanced Procedural Programming Language Elements

Christian Heinlein

Dept. of Computer Structures, University of Ulm, Germany
heinlein@informatik.uni−ulm.de

Abstract. Today’s programming languages have received a considerable de-
gree of complexity, raising the question whether all the concepts provided are
really necessary to solve typical programming problems. As an alternative to
object-oriented and aspect-oriented languages, advanced procedural program-
ming languages are suggested, which slightly extend the two basic concepts of
classical procedural languages, i.e., data structures and procedures operating on
them. By that means, it is possible to design programming languages which are
much simpler to learn and use, while offering comparable expressiveness and
flexibility .

1 Introduction

Today’s programming languages, in particular aspect-oriented languages such as As-
pectJ [9], have received a considerable degree of complexity, making it both hard to
learn their “vocabulary” (i. e., simply know all concepts and constructs offered by the
language) and to “fluently speak” them (i.e., successfully apply these concepts and
constructs in daily programming). In contrast, traditional procedural languages, such
as Pascal or C, provided just two basic building blocks:data structures (records in
particular) andproceduresoperating on them [1]. Modern procedural languages, such
as Modula-2 or Ada, added the concept ofmodulesto support encapsulation and in-
formation hiding [10]. In object-oriented languages such as Eiffel, Java, or C++, these
separate and orthogonal entities have been combined intoclasseswhich offer subtype
polymorphism, inheritanceof data structures and procedures (which are usually called
methodsthere), anddynamic bindingof procedures as additional basic concepts.

Even though object-oriented languages support the construction of software that is
usually more flexible, extensible, and reusable than traditional “procedural software,”
it soon turned out that many desirable properties are still missing. For example,modu-
lar extensibility(i. e., the ability to extend an existing system without modifying or re-
compiling its source code) is limited to adding new (sub)classes to a class hierarchy,
while adding new operations (methods) to existing classes is impossible. Similarly,
retroactively extending or modifying the behaviour of operations is infeasible. A great
deal of research efforts have been expended in the past years to overcome these limi-
tations by providing even more new concepts, e.g., open classes [3], or advice and in-
ter-type member declarations in aspect-oriented languages [9], to name only a few.

Even though the set of these additional concepts is “sufficient” (in the sense that
they indeed solve the problems encountered with object-oriented languages), the

question arises whether they are really “necessary” (in the sense that a smaller or sim-
pler set of concepts would not be sufficient). Using AspectJ as an extreme example,
this language provides eight more or less different kinds of “procedures,” i . e., named
blocks of executable code: static methods, instance methods and constructors defined
in classes (as in the base language Java), plus instance methods and constructors de-
fined as inter-type members in aspects, plus before, after, and around advice (still ne-
glecting the distinction between “after returning,” “ after throwing,” and general “af-
ter” advice).

Figure 1 illustrates this observation graphically: The road leading from procedural
languages via object-oriented languages to “conceptually sufficient” aspect-oriented
languages climbs up the “hill of complexity” by introducing more and more special-
ized language constructs in order to “patch” the original deficiencies of procedural
and object-oriented languages. This hill of complexity is an undesired burden for lan-
guage designers and implementors as well as for language users.

usefulness

flexibility ,
extensibility,
expressiveness,
. . .

complexity
concepts,
keywords,
size of lang. descr.,
. . .

procedural

object-oriented

aspect-oriented

advanced
procedural

Figure 1: Hill of complexity

From a strictly conceptual point of view, this manifold of procedures is highly red-
undant: methods and constructors defined in classes are dispensable because they
could always be defined in aspects; method and constructor bodies are dispensable be-
cause their code could always be defined as advice; before and after advice (the latter
in its three variants) are dispensable because they are just special cases of around ad-
vice (callingproceed at the end resp. beginning of the advice, appropriately embed-
ded in atry /catch block if necessary to distinguish the three variants of after ad-

vice). After these conceptual reductions, around advice −− i. e., the possibility to freely
override an existing “procedure,” either with completely new code (that does not call
proceed) or with code that augments the original code (by calling the latter viapro-
ceed) −− remains as one of theessential(i. e., really necessary) procedure categories.
(This goes in line with the statement that “dynamically scoped functions are the
essence of AOP” [4].)

It turns out, however, that the potential for conceptual reductions is still not ex-
hausted: By employing dynamic type tests (instanceof operator) in an around ad-
vice, a programmer is able to emulate the standard dynamic method dispatch provided
by the base language Java (or any other dispatch strategy he likes) by executing the
advice code only if the dynamic type of the current object is a particular subtype of its
static type (or if some other arbitrary condition is satisfied) and simply callproceed
otherwise. This means in consequence that the specialized built-in dispatch strategy
for methods is dispensable from a purely conceptual point of view, thus removing the
essential difference between statically and dynamically bound methods, i.e., between
static and instance methods.

Similar considerations can be applied to data structures: data fields in classes are dis-
pensable because they are just a special case of inter-type field declarations in aspects.
Taken to the extreme, classes can always be declared with empty bodies, because their
data fields, constructors, and methods can be declared more modularly and flexibly in
aspects.

2 Suggestion

Given these observations, the basic suggestion of this paper is to go back to the start-
ing point of procedural programming languages and extend them into a different di-
rection in order to createadvanced procedural languages which are significantly sim-
pler than aspect-oriented languages while offering comparable expressiveness and
flexibility (cf. Fig. 1).

In particular, replacing simple, statically bound procedures with arbitrarily overrid-
able dynamic procedures (roughly comparable to around advice) covers (with some
additional syntactic sugar which is not essential) the whole range of dynamic dispatch
strategies usually found in object-oriented languages (single, multiple, and even predi-
cate dispatch [2, 5]) plus the additional concept of advice (before, after, and around)
introduced by aspect-oriented languages. Nevertheless, dynamic procedures remain a
single, well-defined concept which is in no way entangled with data structures, class
hierarchies, and the like and therefore is hardly more complex than traditional proce-
dures.

Similarly, replacing simple record types having a fixed set of fields with modularly
extensibleopen typesand attributes(roughly comparable to empty classes extended
by inter-type field declarations) covers classes and interfaces, field declarations in
classes and aspects, multiple inheritance and subtype polymorphism, plus inter-type
parent declarations and advice based onget and set pointcuts (since reading and
writing attributes of open types is implicitly done via overridable dynamic proce-

dures). Again, open types constitute a single, well-defined concept which is little
more complex than traditional record types.

Finally, preserving resp. (re-)introducing themoduleconcept of modern procedural
languages with clearly defined import/export interfaces and a strict separation of mod-
ule definitions and implementations [12], provides perfect support for encapsulation
and information hiding, even for applications where sophisticated concepts such as
nested or friend classes are needed in today’s languages [6, 11].

3 An Example of Open Types and Dynamic Procedures

This section presents a brief example of open types and dynamic procedures in “Ad-
vanced C.” A l ittle software library for the representation and evaluation of arithmetic
expressions shall be developed.

We start by defining some open types with associated attributes.

// General expression.
type Expr;

// Constant expression.
type Const;

// Const is convertable to Expr, i. e. it is a subtype.
conv Const −> Expr;

// Value of constant expression.
attr val : Const −> int;

// Binary expression.
type Binary;
conv Binary −> Expr; // Binary is a subtype of Expr, too.
attr op : Binary −> char; // Operator and
attr left : Binary −> Expr; // left and right
attr right : Binary −> Expr; // operand of binary expression.

Then, a dynamic procedure (orglobal virtual functionin the nomenclature of C/C++)
calledeval is defined to compute the value of an expression.

// Evaluate constant expression.
// The static type of x is Expr, but this "branch" of eval
// is executed only if its dynamic type is Const.
virtual int eval (Expr x : Const) {

return x@val; // @ is the attribute access operator
// similar to the dot operator in other languages.

}

// Evaluate binary expression.
// This branch is executed if x’s dynamic type is Binary.
virtual int eval (Expr x : Binary) {

switch (x@op) {
case ’+’: return eval(x@left) + eval(x@right);
case ’−’: return eval(x@left) − eval(x@right);
case ’*’: return eval(x@left) * eval(x@right);
case ’/’: return eval(x@left) / eval(x@right);
}

}

In a later stage of the development, we detect that we have forgotten to implement the
remainder operator%. We fix this in a completely modular way (i.e., without the need
to touch or recompile the above code) by adding another branch ofeval overriding
the previous one if the additional conditionx@op == ’%’ is satisfied.

// Evaluate remainder expression.
// This branch is executed if x’s dynamic type is Binary
// and the condition x@op == ’%’ holds.
virtual int eval (Expr x : Binary) if (x@op == ’%’) {

return eval(x@left) % eval(x@right);
}

For a particular application of the library, we might want divisions by zero to return a
special null value (represented, e.g., by the smallest available integer value) that prop-
agates through all arithmetic operations (similar to the notion of “not a number” de-
fined by IEEE 754 floating point arithmetics). This can be achieved, again in a com-
pletely modular way, by introducing the following additional branches ofeval .

// Special null value.
const int null = INT_MIN;

// Catch divisions by zero.
virtual int eval (Expr x : Binary)
if (x@op == ’/’ || x@op == ’%’) {

if (eval(x@right) == 0) return null;
else return virtual(); // Call previous branch.

}

// Catch null−valued operands.
virtual int eval (Expr x : Binary) {

if (eval(x@left) == null || eval(x@right) == null) {
return null;

}
else {

return virtual(); // Call previous branch.
}

}

Note that the order in which the branches are defined is crucial in this example: Since
the last branch −− which will be tried first when the function is invoked −− catches null-

valued operands, the second last branch will only be tried if both operands are not null
and so does not need to repeat this test.

In contrast to normal object-oriented languages, where new classes can only be added
as leaf nodes of the class hierarchy, new open types can also be inserted as inner
nodes of the type hierarchy. For example, a new type Atom representing atomic ex-
pressions can be defined as a subtype ofExpr and a supertype ofConst :

// Atomic expression.
type Atom;

// Atom is a subtype of Expr.
conv Atom −> Expr;

// Const is a subtype of Atom.
conv Const −> Atom;

4 An Example from Operating Systems Development

Even though advanced procedural languages are intended to be general-purpose pro-
gramming languages, their application to operating systems development might be
particularly interesting since many of these systems are still implemented in tradition-
al procedural languages (C in particular). Moving, e.g., from C to an “Advanced C”
offering open types and dynamic functions should be much more smooth than shifting
to an object-oriented or even aspect-oriented language, since the basic programming
paradigm remains the same. Furthermore, by interpreting every standard C function as
a dynamic function and every standard C struct as an open type with some initially as-
sociated attributes, it is possible to turn existing source code into flexibly extensible
code at a glance, by simply recompiling it. With some system-dependent linker tricks
it is even possible to turn standard library functions to dynamic functions without
ev en recompiling them.

Operating systems, like software systems in general, usually evolve over time. Taking
Unix and its derivatives as a typical example, this system started as a rather small and
comprehensible system offering a few basic system calls which implemented a few
fundamental concepts. Over the years and decades, it has grown into a large and com-
plex system offering dozens of additional system calls implementing a large number
of advanced concepts.

When using conventional programming languages, the introduction of each new
concept typically requires modifications to numerous existing functions in addition to
implementing new functions. Using open types and dynamic functions instead offers
at least the chance to be able to implement new functionality in a trulymodular way
by grouping new data structures, necessary extensions to existing data structures, new
functions, and necessary redefinitions of existing functions together in a single new
unit of code.

To giv e a concrete example, the introduction ofmandatory file locking into Unix
required modifications to the implementation of several existing system calls (such as

open , read , and write) to make them respectadvisory lockson a file (a concept that
has been introduced earlier) as mandatory if the file’s access permission bits contain
an otherwise meaningless combination. Furthermore, this particular combination of
access permissions has to be treated specially in other places of the system, e.g., by
not performing the standard action of resetting the “set group ID on execution” bit
when such a file is overwritten. By employing dynamic functions, modifications such
as these can be implemented without touching or recompiling existing source code by
simply overriding existing functions with new functions that perform additional tests
before calling their previous implementation or signalling an error such as “lock vio-
lation” if necessary.

5 Conclusion

Advanced procedural programming languages have been suggested as an alternative
direction to extend traditional procedural languages to make them more flexible and
useful. In contrast to object-oriented and aspect-oriented languages, which combine
the existing concepts of modules, data structures, and procedures into classes while at
the same time introducing numerous additional concepts, advanced procedural lan-
guages retain these basic building blocks as orthogonal concepts which are only
slightly extended to achieve the primary aim of modular extensibility.

Even though a first version of an “Advanced C” (that is actually being implemented as
a language extension for C++ to get for free some of the advanced features of C++,
such as templates and overloading of functions and operators) has been used success-
fully to implement some small to medium-sized programs (and there are also imple-
mentations available for dynamic procedures in Oberon and dynamic class methods in
Java [7, 8]), it is too early yet to respectably report about experience and evaluation
results. Of course, dynamic procedures are less efficient at run time than statically
bound procedures because every explicit or implicit delegation of a call to the previ-
ous branch of the procedure is effectively another procedure call, at least when imple-
mented straightforwardly without any optimizations. Furthermore, inlining of proce-
dure calls becomes impossible if procedures can be freely redefined elsewhere. Never-
theless, the performance penalty encountered appears to be tolerable in practice if the
concept is used reasonably.

It is often argued that the possibility to freely redefine procedures anywhere might
quickly lead to incomprehensible code because this possibility might indeed be
abused to completely change the behaviour of everything in a system. However, the
limited practical experience gained so far suggests that the opposite is true, because
when applied with care this possibility provides the unique ability to group related
code together in a single place instead of needing to disperse it throughout a whole
system. By that means, it is possible to develop and understand a system incremental-
ly: Given that the basic functionality of the system is correct, it is possible to reason
about its extensions separately in a modular way.

References

[1] A. V. Aho, J. E. Hopcroft:Data Structures and Algorithms. Addison-Wesley, Reading,
MA, 1983.

[2] C. Chambers, W. Chen: “Efficient Multiple and Predicate Dispatching.” In:Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA ’1999)(Den-
ver, CO, November 1999).ACM SIGPLAN Notices34 (10) October 1999, 238−−255.

[3] C. Clifton, G. T. Leavens, C. Chambers, T. Millstein: “MultiJava: Modular Open Classes
and Symmetric Multiple Dispatch for Java.” In: Proc. 2000 ACM SIGPLAN Conf. on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA ’00)(Minneapolis,
MN, October 2000).ACM SIGPLAN Notices35 (10) October 2000, 130−−145.

[4] P. Costanza: “Dynamically Scoped Functions as the Essence of AOP.” ACM SIGPLAN No-
tices38 (8) August 2003, 29−−36.

[5] M. Ernst, C. Kaplan, C. Chambers: “Predicate Dispatching: A Unified Theory of Dis-
patch.” In: E. Jul (ed.):ECOOP’98 −− Object-Oriented Programming(12th European Confer-
ence; Brussels, Belgium, July 1998; Proceedings). Lecture Notes in Computer Science 1445,
Springer-Verlag, Berlin, 1998, 186−−211.

[6] J. Gosling, B. Joy, G. Steele:The Java Language Specification. Addison-Wesley, Reading,
MA, 1996.

[7] C. Heinlein: Vertical, Horizontal, and Behavioural Extensibility of Software Systems. Nr.
2003-06, Ulmer Informatik-Berichte, Fakultät für Informatik, Universität Ulm, July 2003.
http://www.informatik.uni-ulm.de/pw/berichte/

[8] C. Heinlein: “Dynamic Class Methods in Java.” In: Net.ObjectDays 2003. Tagungsband
(Erfurt, Germany, September 2003). tranSIT GmbH, Ilmenau, 2003, ISBN 3-9808628-2-8,
215−−229.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold: “An Overview
of AspectJ.” In: J. Lindskov Knudsen (ed.):ECOOP 2001 −− Object-Oriented Programming
(15th European Conference; Budapest, Hungary, June 2001; Proceedings). Lecture Notes in
Computer Science 2072, Springer-Verlag, Berlin, 2001, 327−−353.

[10] D. L. Parnas: “On the Criteria to Be Used in Decomposing Systems into Modules.”Com-
munications of the ACM 15 (12) December 1972, 1053−−1058.

[11] B. Stroustrup:The C++ Programming Language (Special Edition). Addison-Wesley,
Reading, MA, 2000.

[12] N. Wirth: Programming in Modula-2(Fourth Edition). Springer-Verlag, Berlin, 1988.

