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Abstract. The basic idea of open types is to separate the definition of types
from the definition of their constituents, i. e., their base types (or superclasses to
use object-oriented terminology) and their data members (or fields). This is in
complete contrast to traditional record types and object-oriented classes, which
are closed in the sense that the set of their constituents is fixed once the type
has been defined. It will be shown, however, that this alternative approach opens
the door to greatly enhanced expressiveness and increased flexibility. Even
though the concept of open types is presented in this paper as a language exten-
sion for C++, the basic principles are actually language-independent and could
be incorporated into any imperative programming language.

1 Open Types

1.1 Type and Attribute Definitions

An open type is defined by declaring its name with the keyword typename, e. g.:

typename Person;
typename Car;

Afterwards, a single-valued attribute such as name −− corresponding to a data field in
record notion −− can be defined by declaring it as a kind of mapping from Persons to
strings:

Person −> string name;

Here, the right hand side of the definition (string name;) looks identical to a C++
(member) variable definition.

Similarly, a multi-valued attribute such as gnames (given names) −− corresponding
to a data field whose type is an array or container type −− is defined by using a double
instead of a single arrow to indicate the multi-valuedness:

Person −>> string gnames;

1.2 Constructors and Mutators

To create, initialize, and modify objects of an open type T, the following constructors
and mutators are provided.



The parameterless constructor T(), which might either be called explicitly or is
called implicitly for variables of type T which are not initialized explicitly [8], returns
the null object of type T, i. e., actually no object. In contrast, the attribute-
initialization constructor T(@attr, val) creates a distinct new object of type T,
i. e., an object that is different from null and any other object, and initializes its at-
tribute attr with value val.

Similarly, the attribute mutator obj(@attr, val) sets the value of attribute attr
of object obj to val (if attr is a single-valued attribute) or adds val to obj’s values
of attribute attr (if attr is a multi-valued attribute) and returns the object obj. This
allows straightforward combinations of a constructor call with one or more mutator
calls to create an object with multiple initial attribute values, e. g.:

Person p = Person(@name, "Hoare")(@gnames, "Charles")
(@gnames, "Anthony")(@gnames, "Richard");

Here, the constructor call Person(@name, "Hoare") creates a new Person object,
initializes its attribute name with the string "Hoare", and returns the object. This ob-
ject is directly used in the mutator call ...(@gnames, "Charles") which initializes
its attribute gnames with "Charles" and returns the same object. This is again used
in and returned by the subsequent mutator calls ...(@gnames, "Anthony") and
...(@gnames, "Richard") which in turn add the strings "Anthony" and
"Richard" to the values of attribute gnames. Finally, the object returned by the last
mutator call is assigned to the Person variable p.

To create an empty object, i. e., a distinct object which is different from null and
any other object, but does not possess any attribute values yet, the Boolean construc-
tor T(flag) can be used. If the Boolean value flag is true, a unique empty object
is created, while otherwise a null object is returned, i. e., T(false) is equivalent to
just T(). On the other hand, a call T(@attr, val) to the attribute-initialization con-
structor is actually just a shorthand for T(true)(@attr, val), i. e., a call to the
Boolean constructor followed by an appropriate mutator call.

In addition to these predefined constructors of open types, it is possible to define arbi-
trary user-defined constructors, e. g.:

// Create person with given name g and name n.
Person (string g, string n) {

return Person(@name, n)(@gnames, g);
}

In contrast to normal C++ constructors (and constructors in other object-oriented pro-
gramming languages) which must be defined (or at least declared) inside their class
and must not explicitly return anything, but rather initialize the implicitly available
object this, user-defined constructors of open types are much like ordinary (global)
functions whose result type and name coincide (and therefore only one of them is
specified in their definition). In particular, there is no implicitly available object this,
and the constructor must explicitly (create and) return an object, typically by calling
one of the predefined constructors. Furthermore, just like attributes, constructors can
be defined successively on demand.



1.3 The Attribute Inspection Operator @

To inspect the attribute values of a given object, the attribute inspection operator @
can be used, quite similar to the way the dot operator is used to access class members
in C++ and other languages, e. g.:

string n = p@name;

For a single-valued attribute such as name, its current value is returned, i. e., the value
that has been set for this attribute by the most recent mutator (or attribute-
initialization constructor) call for this object. If none of these operations has been ex-
ecuted for the object yet, i. e., the attribute does not possess any value, a well-defined
default value is returned that is obtained by calling the parameterless default con-
structor of the attribute’s type (i. e., string in the current example). Ideally, this con-
structor should return null to indicate the absence of any real value [2], but in princi-
ple any value (e. g., an empty string or zero for numeric types) is acceptable.

If a multi-valued attribute such as gnames is inspected with the @ operator, the val-
ues added to this attribute by all mutator (and attribute-initialization constructor) calls
performed for this object so far are returned as an ordered sequence. Even though it is
possible to grasp such a sequence as a whole, it is typically processed element by ele-
ment using a tailored iteration statement, e. g.:

for (string g : p@gnames) cout << g << " ";

This prints p’s giv en names in the order in which they hav e been added, i. e.,
Charles Anthony Richard. Alternatively, it is possible to directly inspect individu-
al values of such a sequence by applying the well-known index operator, e. g.:

string g2 = p@gnames[2];

to obtain the second given name of p, i. e., "Anthony". Similarly to inspecting the
value of a non-existent single-valued attribute, inspecting a non-existent value of a
multi-valued attribute by using an out-of-range index yields a well-defined default
value that is obtained in the same way as described above. Therefore, expressions
such as p@gnames[0] or p@gnames[4] will return a null string in the current exam-
ple.

It should be noted that the attribute inspection operator always returns an R-value [8],
i. e., a value which must not occur on the left hand side of an assignment operator.
Therefore, attribute update operations must only be performed by mutator calls, not
directly by assignments such as:

p@name = "Hoare"; // Syntax error!

1.4 Inspecting and Modifying Null Objects

Trying to inspect or modify a member of “object null,” i. e., the “object” referenced by
a null pointer, is illegal in C++ and many other languages and usually leads to a run



time error such as a SIGSEGV (segmentation violation) signal or a NullPointerEx-
ception, since a null pointer actually does not refer to any object.

In contrast to that, inspecting and modifying attributes of open types is well-defined
ev en for null objects: While inspecting such an attribute is equivalent to inspecting a
non-existent attribute, i. e., returns the attribute’s default value, modifying such an at-
tribute simply has no effect. The main reason for these unusual definitions is con-
venience, since they allow to omit many otherwise necessary checks. To test, for ex-
ample, whether p’s name is "Hoare", one can simply write if (p@name ==
"Hoare") −− instead of if (p && p@name == "Hoare") −− even if p might be null; if
it actually is, p@name is null, too, and therefore, as expected, different from "Hoare".
Simultaneously, programs tend to become more robust since inadvertently omitted
checks will not lead to run time errors, but usually merely to unsatisfied conditions.

Similarly, the definition that mutator calls on null objects are silently ignored fre-
quently reduces the need to explicitly distinguish between real and null objects, and
again, inadvertently omitting such distinctions does not lead to run time errors (cf.
[2]).

1.5 Object Deletion

In contrast to normal C++ objects, which must be explicitly deleted by the program-
mer to reclaim their storage, objects of open types are automatically garbage-
collected when they hav e become unreachable, quite similar to objects of classes in
Java, Eiffel, Smalltalk, and many other programming languages.

In addition to and independently from this automatic storage reclamation, it is also
possible to explicitly delete objects −− even while they are still referenced. Although
this might appear strange at first sight, there are reasonable practical examples where
this is useful. If, for instance, a car has been scrapped, it does not exist anymore, even
though it might still appear in the list of all cars of its (previous) owner.

In contrast to C++, however, where the deletion of an object might lead to danger-
ous dangling pointers, deletion of an open type object causes all remaining references
to the object to become null immediately and automatically. By that means, it is al-
ways possible to reliably detect that an object has been deleted. Furthermore, since
null objects can be safely inspected and modified, too, neither run time errors nor un-
defined behaviour will occur if deleted objects are used without care. Since object
deletions might be performed unexpectedly, this is another strong argument for the
definitions given in Sec. 1.4.

2 Bidirectional Relationships

Basically, a bidirectional relationship between two types is also a kind of mapping
from one type to the other, with the additional possibility to directly access the inverse
mapping. Since both of these mappings might be either single- or multiple-valued,
there are four different kinds of relationships altogether, one to one, one to many,
many to one, and many to many, expressed by corresponding bidirectional arrow sym-
bols <−>, <−>>, <<−>, and <<−>>, respectively. Furthermore, there are two special



kinds, i. e., symmetric one-to-one and many-to-many relationships, where the inverse
mapping is equivalent to the original mapping.

For example, a one-to-many relationship between Person and Car called cars resp.
owner can be defined as follows:

Person owner <−>> Car cars;

Reading this from left to right (and omitting the name on the LHS) yields a multi-
valued attribute of type Person:

Person −>> Car cars;

while reading from right to left (and omitting the name on the RHS) yields a single-
valued attribute of type Car:

Car −> Person owner;

representing the inverse mapping. However, only by combining both attribute defini-
tions into a single relationship definition as shown above, they are actually treated as
mutually inverse mappings, which means that a call to one of the mutators automati-
cally implies a corresponding call to the other mutator with reversed roles.

For example, a mutator call such as p(@cars, c) adding c to p’s sequence of cars,
implies the call c(@owner, p) assigning p as c’s owner, and vice versa. Furthermore,
if c already possesses another owner q when either such call is made, c is first re-
moved from the sequence of q’s cars.

3 Anonymous and Automatic Attributes and Relationships

3.1 Basic Principles

If the name of a single-valued attribute is omitted, it implicitly possesses the name of
its target type, e. g.:

typename Address;
Person −> Address;

Person p = Person(@Adress, Address(...));
Address a = p@Adress;

Similarly, it is possible to omit one or both names of a bidirectional relationship.

If the arrow in an attribute declaration is followed by an exclamation mark, the at-
tribute might be applied automatically on demand to perform an implicit type conver-
sion from its source type (left of the arrow) to its target type (right of the arrow), e. g.:

Person −>! int pid;

This declares an int attribute pid of type Person which can be used just like any
other attribute, with the additional property that an expression of type Person is im-
plicitly convertible to an int value by automatically applying this attribute.



Similarly, it is possible to declare automatic relationships by adding an exclamation
mark before or after the bidirectional arrow, depending on which direction of the rela-
tionship should be automatically applicable.

3.2 Modeling Type Hierarchies

Automatic one-to-one relationships can be exploited to model object-oriented type hi-
erarchies with subtype polymorphism without requiring any additional mechanisms.
For example, a new type Student (with a regular attribute number denoting the ma-
triculation number) might be defined as a “subtype” of Person by declaring a one-to-
one relationship between these types that is automatically applicable from the derived
type to the base type:

// Declare Student as a "subtype" of Person.
typename Student;
Student −> string number;
Student <−>! Person;

Typically, but not necessarily, such “subtype” relationships are anonymous.

A typical constructor for Student might be defined as follows:

// Create student with given name g, name n,
// and matriculation number m.
Student (string g, string n, string m) {

// Create person subobject.
Person p = Person(@name, n)(@gnames, g);

// Create and return student object connected with p.
return Student(@Person, p)(@number, m);

}

Now, a student named Peter Clark with matriculation number 777 can be created and
used as follows:

// Create student.
Student s = Student("Peter", "Clark", 777);

// Print name and matriculation number.
cout << "Name: " << s@name << endl;
cout << "Number: " << s@number << endl;

Because the relationship between Student and Person is applied automatically on
demand, the subexpression s@name is actually replaced by s@Person@name. Further-
more, all functions accepting Person arguments can be called with Student objects,
too, and finally, a Student object can be used polymorphically as a Person object.

The fact that the relationship between Student and Person is bidirectional can be
exploited to check whether a given Person object “is” actually a student (i. e., to per-
form a dynamic type test) and to access its student attributes if appropriate (i. e., to
perform a downcast):



// Polymorphically use a student as a person.
Person p = Student("Peter", "Clark", 777);

// Check whether p is actually a student s ...
if (Student s = p@Student) {

// ... and access its matriculation number.
cout << "Number: " << s@number << endl;

}

This corresponds roughly to a dynamic_cast in C++ which returns a valid pointer to
an object of a derived class if the cast has been successful and a null pointer other-
wise.

By employing automatic relationships to model object-oriented type hierarchies, the
traditionally distinct or even conflicting concepts of aggregation and inheritance have
been merged into a single coherent concept. Furthermore, the fact that relationships
can be defined incrementally, allows “supertypes” of a type to be declared later on,
e. g.:

// Declare Vehicle as a "supertype" of Car.
typename Vehicle;
Car <−>! Vehicle;

Despite its practical usefulness, such a possibility is missing in most object-oriented
programming languages.

3.3 Multiple Inheritance

Of course, it is possible to use automatic relationships to model type hierarchies with
multiple inheritance, too. For example, one might define a type EmployedStudent
that is derived from both Student and another type Employee:

// Declare Employee as a subtype of Person.
typename Employee;
Employee <−>! Person;

// Attributes and constructors of Employee.
Employee −> string company;
Employee (......) { ...... }

// Declare EmployedStudent as a
// subtype of Student and Employee.
typename EmployedStudent;
EmployedStudent <−>! Student;
EmployedStudent <−>! Employee;

Since both of these types in turn “inherit” from Person, the typical question arises
whether an EmployedStudent object should possess one or two Person subobjects,
i. e., whether Person is, in C++ terminology, a virtual base type or not. In C++, the
corresponding decision must be taken when the types Student and Employee are



defined, even though it does not make any difference for these types. Therefore, it
would be much more logical to answer the question when EmployedStudent is de-
fined, because only for this type (and possible subtypes of it) the distinction is rele-
vant. However, the concept of automatic relationships does not provide a way to spec-
ify the difference at the level of declarations: The four <−>! relationships between
the types Person, Student, Employee, and EmployedStudent merely specify that
there are two ways to convert an EmployedStudent to a Person, either via Stu-
dent or via Employee, but they do not specify whether these ways lead to the same
destination, i. e., to the same Person object, or not. Even though this appears to be
disadvantageous at first sight, it will turn out to be the most flexible approach possi-
ble.

To actually distinguish between virtual and non-virtual inheritance, one simply cre-
ates either one or two Person “subobjects” when creating an EmployedStudent ob-
ject in a constructor, e. g.:

// Create employed student with given name g, name n,
// matriculation number m, and company c.
EmployedStudent (string g, string n, string m, string c) {

Person p = Person(@name, n)(@gnames, g);
Student s = Student(@Person, p)(@number, m);
Employee e = Employee(@Person, p)(@company, c);
return EmployedStudent(@Student, s)(@Employee, e);

}

Here, a single Person object p is created that is passed to both the Student and Em-
ployee constructors to create Student and Employee objects s and e, respectively,
which share the subobject p. Afterwards, an EmployedStudent object with subob-
jects s and e is created and returned. Therefore, converting an EmployedStudent
object created by this constructor to type Person always yields the same Person
subobject, no matter whether the conversion is done via Student or via Employee.

3.4 Dynamic Object Evolution

The fact that an object of a derived type such as Student or EmployedStudent is
actually a network of interconnected subobjects −− even though this remains invisible
except when constructing the objects −−, can be exploited in a straightforward manner
to implement dynamic object evolution. For example, it is almost trivial to transform
an object that has been initially created as a bare person into a student, an employee,
or even an employed student later, by simply creating additional associated subob-
jects, e. g.:

// Create a person object p.
Person p = Person("Peter", "Clark");

// "Transform" p to a student.
p(@Student, Student(@number, 777));

Conversely, it is also possible to delete subobjects to transform a specialized object to



a more general one, e. g.:

// "Transform" p back to a person.
delete p@Student;

Here, it does not matter whether p has been originally created as a Person or a Stu-
dent (or something else).

By explicitly deleting the student subobject associated with p, all “student refer-
ences” to this person automatically become null. Otherwise, if only the association
between p and its student object would have been cut, these references would remain
valid, but refer to a degenerate student object that does not possess an associated per-
son object anymore. (According to the rules given in Sec. 1.4, accesses to this person
object and its attributes would still be well-defined, however.)

It is even possible to create “hybrid” objects, such as a person that is both a student
and an employee, even if no common “subtype” of these types (such as Employed-
Student) would exist.

4 Related Work

Aspect-oriented programming languages such as AspectJ [4] or AspectC++ [7] pro-
vide so-called inter-type member declarations or introductions to retroactively extend
existing data structure definitions without needing to change the code of the original
definitions. Nevertheless, some kind of recompilation or “weaving” is required by all
these approaches: While the AspectC++ compiler needs the source code of the origi-
nal definition together with all extension code to produce a new definition that is actu-
ally compiled by a C++ compiler, the AspectJ compiler is able to perform the combi-
nation on the byte code level. Frameworks such as JMangler [5] are even able to delay
the final composition until load time, but in either case a class remains fixed once it
has been loaded. Open types, on the other hand, allow attributes to be loaded dynami-
cally, even for types which have already been instantiated.

Actually, aspect-oriented approaches still adhere to the traditional concept of
records as fixed data structures and only make their definition more flexible, while
open types support truly flexible objects whose storage size might vary over time.

The Common Lisp Object System (CLOS) [3] (and other languages based on similar
ideas) deviate from the typical object-oriented approach that everything belonging to a
class must be defined (or at least declared) in the class, by allowing methods (of so-
called generic functions) to be defined separately and incrementally. Howev er, the set
of data fields making up a class must still be defined at once and cannot be extended
later, except by redefining the whole class. In contrast, open types apply the “generic
function principle,” i. e., the possibility to define methods separately and independent-
ly, to data fields, too.

Description logic systems such as Classic [1] and Loom [6] provide data models
which are very similar in nature to open types and have in fact influenced some of
their ideas. They provide concepts (corresponding to open types) and roles (corre-



sponding to attributes and relationships), which are defined separately and indepen-
dently, and roles might possess inverse roles. Furthermore, a running system can be
extended by new definitions at any time.

However, since description logic systems are actually AI tools, providing powerful
reasoning capabilities such as subsumption checking, automatic instance classifica-
tion, and truth maintenance, using them as bare data models of a programming lan-
guage would mean to break a fly upon the wheel. Therefore, open types might be
viewed as the result of reducing a description logic system to a simple data represen-
tation system by stripping off all AI functionality.
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