Advanced Thread Synchronization in Java

Christian Heinlein

Dept. of Computer Structures, Waisity of Ulm, German
heinlein@informatik.uni-ulm.de

Abstract. Thread synchronization in i wsing synchronized methods or
statements is simple and straightfardl as long as mutuak@usion of threads

is suficient for an application. Things become less straighdoiwwhen

wait() andnotify() have © be employed to realize more fiéble synchro-
nization schemes. Using dwvell-known examples, the boundediffer and the
readers and writers problem, the snares and traps of hand-coded synchroniza-
tion code and its entanglement with the actual application code are illustrated.
Fallowing that, interaction»pressions are introduced as a completelfediht
approach where synchronization problems areesbim a declarate way by
simply specifying permissiblexecution sequences of methods. Their gnée

tion into the Jaa pogramming language using a simple precompiler and the
basic ideas to enforce the synchronization constraints maktiait vay are de-
scribed.

1. Introduction

Thread synchronization in vl wsing synchronized methods or statements is sim-
ple and straightforard as long as mutuak@usion of threads is di€ient for an ap-
plication. Things become less straightfard whenwait() and notify() (or no-
tifyAll()) haveto be emplged to realize more figble synchronization schemes.
In that contgt, things becomeven more complicated by theaft thatmonitors and
condition variables— which hare teen related, it sepaate entities in the original
monitor concept [8-havebeen meged into a single unit, namely an object [12, 13].
In practice that means thateey Java doject used as a monitor possesses only a sin-
gle, implicit condition ariable which is the object itself. Therefore, montiased so-
lutions of synchronization problems usingoter more diferent condition ariables—
for example, the rather straightfoand solution of the well-knen bounded bffer
problem shan in Fig. 1—are difficult to cowert to functionally equialent and com-
parably compreheng Jva programs. Guaranteeing (and yir@) the correctness of
such code is further complicated by tlaetfthatnotify() (or notifyAll()) does
neither suspend thexeeuting thread (either immediately or at the time ivésathe
monitor, i. e, thesynchronized method or statement it is currentlyeeuting) nor
immediately resumes the natifl thread. (In other ards, notify() does not put the
notified thread in theunning, but only in therunnablestate.) That means that the no-
tifying thread (or wen any ather currently running thread) mighteeute the monitor
code seeral times agin before the noiiéd thread is actually able to continue. This
behaviour, which is in contrast to theignal semantics of the original monitor con-
cept, usually imprees performance as it demandsmer thread switches,ub on the
other hand increases the typically already high enough possibility of undesired race
conditions gen further

Using the boundeduffer problem already mentioned alepSec. 2 illustrates these
problems for a typical and not too complicated reaitdv example. Bllowing that,

monitor Buffer;

const
N=.. (* buffer size *)

var
buf: array [0 .. N-1] of integer; (* buffer *)
n: integer := 0; (* number of currently occupied slots *)
p: integer := index of next slot for put *)
g: integer := index of next slot for get *)
notempty, notfull: condition; (* buffer conditions *)

0; (*
0; (*

procedure put(x: integer);

begin
if n = N then wait(notfull);
buf[p] := x;
p:=(p + 1) modN;
n:=n+1,;
if n = 1 then signal(notempty);
end;

procedure get(var x: integer);

begin
if n = 0 then wait(notempty);
X @ = buffg];
g :=(g + 1) modN;
n:=n-1;
if n = N - 1 then signal(notfull);
end;
end.

Figure 1: Monitosbased solution of the boundedffer problem in a Bscal-lile language

Sec. 3 introduces the basic idedrdéraction expressionsand demonstrates their use

to derive a oncise and clear solution of the boundetfdr problem in a f& minutes.

In Sec. 4, solutions based on interactigpressions of another well-kmoa synchro-
nization problem, namely the readers and writers problem, are presented and com-
pared with handwritten synchronization code.

Folowing these deliberatelyxtensive nmotivating sections, Sec. 5 actually de-
scribes the ©ensions to the ¥a programming language which are necessary to use
interaction &pressions in & programs and their basic implementation in a precom-
piler. Section 6 briefly describes the implementation of an accogipgtibrary class
which actually performs the requested synchronization at run time. FiSafly 7
concludes the paper with a summary and outlook.

2. TheBounded Buffer Problem

Figure 2 shws a transformation of the monitbased solution of the boundedfier
problem into Jea wde, where the tw explicit condition \ariablesnotempty and
notfull of Fig. 1 hae keen meged into the single implicit conditioraviable asso-

class Buffer {
private final int N = ...;
private int [] buf = new int[N];
private intn=0,p=0,g9=0;

public synchronized void put(int x) {
if (n == N) wait();

buf[p] = x;
p = (p + 1) % N
n++:
if (n == 1) notify();

}

public synchronized int get() {
if (n == 0) wait();
int x = buf[g];
g=(g+1) %N
n--;
if (n == N - 1) notify();
return x;

Figure 2: Erroneous solution of the boundeffdr problem in Jea

ciated with the current objetttis .* This code wuld behae orrectly if a notifed
thread vould be guaranteed to continugegution immediately after the notifying
thread has left the monitdBut since such bek#ur is not guaranteed invia the fol-
lowing erroneous>&cution sequence might happen in principle and is actually ob-
sened in practice:

Two consumer thread€;; andC,, call get() on an empty bffer and thus will be
blocked bywait()

Then, a producer thredd executesput() causing one of the consumer threads,
C, or C,, to become wakened bynotify()

Howevae, if the currently running thread has not yet)ceeded its time slice, it is
usually alleved to continue running before thevakened thread is actually re-
sumed. Therefore, it might happen tRaéxecutes anothek calls ofput() before
it becomes bloaéd bywait() because theuffer has run full.

Now, the preiously avakened consumer thread is actually resumed and completes
its execution ofget() . Because theuffer has become full in the mean tinme;

tify() will be executed at the end afet() which is assumed toasken a po-
ducer thread witing for the liffer to becomaotfull (cf. Fig. 1).

7o amplify the examples, thedct thatwait() might thrav an InterruptedException , which must be
either caught or declared in the headensudj andget() , is ignored.

* Howeva, it might actually happen thatotify() aw&ens the second consumer
thread. (Because this thread has been blbdkr a longer time than the producer
threadP, this is indeed quite probable.)

« Before this thread is actually resumedwieer, the currently running consumer
thread might eecute further calls ofet() until it becomes bload by wait()
due to an emptyuifer.

* Now, the second consumer thread is actually resumed and completecitiom
of get() , despite thedct that the Wffer is currently empty!

To avoid such subtle errors, a “brute force” solution resembling the ideansfition-

al critical regons [2] might be emplged (cf. Fig. 3). This is certainly correctytb
rather ineficient asnotifyAll() always avakens all waiting threads while only
oneof them can actually proceed aftemds. In particularawakening threads xecut-
ing the same methogut() orget()) as the notifying thread is completely unnec-
essary

class Buffer {
private final int N = ...;
private int [] buf = new int[N];
private intn=0,p=0,g=0;

public synchronized void put(int x) {
while (n == N) wait();
buf[p] = x;
p=(p+1) %N
n++;
notifyAll();
}

public synchronized int get() {
while (n == 0) wait();
int x = buf[g];
g=(g+1) %N
n--,
notifyAll();
return x;

Figure 3: Correct, Wt inefficient solution of the boundeditfer problem

To complete the xeample, Fig. 4 shes a correct and maximallyfefient solution of
the problem, whichen improves the original monitor solution by allking one pro-
ducer and one consumer thread to operate ontiffier lconcurrently Howeve, nei-

ther inding nor \erifying this solution is a simple task, and the chance verl@ok-

ing another subtle detail ixteemely high.

class Buffer {
private final int N = ...;
private int [] buf = new int[N];
private intp=0, g =0;
private int empty = N, full = 0;
private Object plock = new Object(), glock = new Object();

public void put(int x) {
synchronized (plock) {
while (empty == 0) plock.wait();
buf[p] = x;
p=(p+1) %N
empty—-;

synchronized (glock) {
full++;
glock.notify();

}

public int get() {
int x;
synchronized (glock) {
while (full == 0) glock.wait();

X = buffg];
g=(g+1)%N
full--;

}

synchronized (plock) {
empty++;
plock.notify();

return Xx;

}
}

Figure 4: Correct and maximallyfigfient solution of the boundediter problem

3. Interaction Expressions

Apart from these correctness anfl@éng/ considerations, all solutions presented so
far suffer from an urdivaurable intermixing of the actual application code with both-
ering synchronization details. &v in the original monitor solution, more than half of
the code of the methogsit() andget() deals with synchronization. If correct-e
ecution sequences of these methods could be enforced otherwjsmjgheactually

be reduced to the follding few lines:

void put(int x) {
buf[p] = x;
p=(p+1) %N

int get() {
int x = buf[g];
g=(g+1) %N
return x;

}

Of course, one might gue rightly that degloping sophisticated synchronization
schemes for such short and simple methods iasterof time—both for the program-
mer who has to write the code and for the run-time system wkéclutes it, because
the latter might be able to schedule threads mdireiezitly in practice if the methods
were simply declareslynchronized , even if this is too restrictie from a theoretical
point of view. If reading and writing liffer elements is more costlgowevae, e g., if
extensie file operations are wolved, unnecessary mutuadodusion actually becomes
a considerable performance beak

Separating dféerent aspects of an application and implementing them independently
is adwcated as a general principle by the current trenglspéct-oriented jmgram-
ming [10, 11]. The particular idea to separate-level synchronization details from
the more abstract parts of an application, is quite oldiebes. In the early 1970s,
path pressionshave keen proposed as a simple formalism to desqoiéenissible
execution sequencex Pascal procedures and by that means to indirectly spsify
chronization conditionsfor them [3]. Similarly syndironization &pressionshave
been deeloped in the mid 1990s to synchronize statements of concurrent C programs
[5]. Due to seeral severe restrictions of these and other related formalisms, yet anoth-
er similar approach callédteraction expressionshas been deloped recently [6, 7].

The basic idea isabys the same, eever: A formalism based onxéended rgu-
lar expressions is used to describe synchronization conditions for statements, proce-
dures, or methods separately from the actual application codeery dlexible and
comfortable vay. The language of such an xpression (or set ofxpressions), e., the
set ofwordsit accepts [9], is interpreted as the sepefmissible gecution sequences
of these code units.oTactually enforce the constraints spéaif by such epressions,
they are transformed into some suitable state model by the compiler or an appropriate
precompiler Furthermore, all methods (or other code units) occurring in one or more
expressions are braeted by a prologue and an epilogue which perform correspond-
ing state transitions if tlyeare currently permitted or otherwiseait until they be-
come permitted.

To gve a oncrete gample, consider the interactioxpeession
expr * (|[int x] put(x) - get());

where the operators and * denote sequence and repetition, respégti and
[[intx]put(x) is roughly equialent to put() 2 Furthermore, interactiorxpres-
sions are introduced by theyword expr and terminated by a semicolon. Because

ZBecause methods might beedoaded, the sub@ression|[intx] put(x) , pecifying thatput(x)
might be @ecuted withanyint value x, must be used instead of simpiyt() to correctly refer to the
method with the signatupit(intx)

this expression is almost equent to the rgular expression(put ge)* possessing
the language

{ M Cput, getl) Cput, get, put, getl]...},

it specifes that the methodsut() andget() have be executed in alternating se-
quence starting witput() . This is the required behmur, if the uffer would pos-
sess just a single slotgi, for the casH = 1.

For N = 2, two such sequences might breeutedconcurently and independently
(which can bexpressed by the parallel composition operadoif groups ofput() s
and groups ofjet() s ae both &ecuted sequentially (which can bepeessed by rep-
etition operatorg). This leads to the folleing set of interactionxressions:

/I Allow two concurrent alternating sequences
/I of put() and get().
expr * (|[int x] put(x) - get())

+ % (] [intx] put(x) - get());

/I Enforce sequential execution

/I of multiple put()s and multiple get()s.
expr * [[int x] put(x);

expr * get();

To ecify for aty N thatN alternating sequences pfit) andget() might be &-
ecuted concurrentlya multiplier expression+{N} body can be used to ablviate the
expressiorbody +. ..+ body for ary subexpressiorbody :

/I Allow N concurrent alternating sequences
/1 of put() and get().

expr +{N} * (|[int x] put(x) - get());

In practice, this xpression aoids huffer underflavs (because eachxeeution of
get() requires a precedingecution ofput()) as well as luffer overflows (because
each &ecution ofput() in one of theN concurrent alternating sequences requires a
successie exeution ofget() before anothernecution ofput() is permitted in the
same sequence).

Compared with thexlicit synchronization shen in Fig. 4, whose delopment is
time-consuming, errgprone, and hard to understand aedfy, devdoping the equi-

alent interaction xpressions shen abwe is a $raightforward task taking a fe min-

utes after a little training of the formalism (which can be done instead of strenuously
studying tetbooks on the synchronization ofvaatreads to woid the pitklls out-

lined in Sec. 2).

Remark:Because this paper does not constitute a tutorial on interacfioessions,
but rather a description of their irgeation and typical use in\i the formalism itself
is not &plained in more detail. Neertheless, thexamples gien in the present and
subsequent section are intended w@®dhe reader a taste of the formalisnepres-

siveness and applicability

4. The Readersand Writers Problem

The well-knavn readers and writers problema-data object might be accessed by
several readers simultaneoushlyhile a writer needsxelusive access [4]—is another
example of a synchronization problem where simple mutazlsion is unsatisicto-

ry when the read and write operationsetakn-neglectable time. Fi?ure 5 shvs a
possible solution in Ja, which is firly compact and comprehewsi” On the other
hand, Fig. 6 shes an equialent solution with interactionx@ression$which is en
more compact and comprehareses well as less errgprone and much easier to adapt
to additional requirements.oTgecify, for instance, that tharét operation must be
write() (to guarantee proper initialization of the data object), this is simplyvachie
by replacing the interactiorxpression with the folleing:

expr write() — * (# read() | write());

If additional operationgreate() , open() , close() , and destroy() are intro-
duced, thexgressions

expr rw() = write() - * (# read() | write());
expr oc() =* (open() - rw() — close());
expr * (create() - oc() — destroy());

(whererw() andoc() areinteraction macoswhose calls are replaced by their right
hand side in subsequent interactiapressions or macros) can be used to specify the
permitted &ecution sequences in a simple and naturay without disturbing anof

the method bodies, whilexeending the solution of Fig. 5 in an egalent manner
would require the introduction of weral auxiliary “state ariables” and substantial
extensions to the methods/bived.

class ReadWrite {
intn=0; /I Number of currently executing readers.
...... I Other data fields.

public void read() {
synchronized (this) { n++; }
...... Il Actual read operation.
synchronized (this) { if (——n == 0) notifyAll(); }
}

public synchronized void write() {
while (n > 0) wait();
...... Il Actual write operation.

Figure 5: Solution of the readers and writers problemva Ja

3To amplify the example, the parametersmehd() andwrite() are omitted.

The operato#t permits ag number ofread() s t be executed concurrentlywhile the typical pattern
() (where| denotes choice) spei@$ that readers and writers are mutuatiylesive.
They keyword sync indicates that the method=ad() andwrite() are subject to synchronization by in-
teraction &pressions (cf. Sec. 5).

class ReadWrite {
...... Il Other data fields.

Il Interaction expression to synchronize read() and write().
expr * (# read() | write());

public sync void read() {

...... Il Actual read operation.
}
public sync void write() {

...... Il Actual write operation.
}

Figure 6: Solution of the readers and writers problem with interactjpregsions

5. Java Language Extensions

To actually allov a programmer to sokv synchronization problems occurring in avda
program by means of interactiorpeessions, tw extensions to the ¥a programming
language are necessary:

1. Methodsmight be declaredync to indicate that theare subject to synchroniza-
tion by interaction xpressions.
Only methods declared thataw are allaved to appear in interactioxgressions,
and async method of a superclass (or an inded) must not beverridden by a
nonsync method in a subclass (or an implementing class).

2. Classegand, in a limited \ay, interfaces, too) might contain interactiorpees-
sions (and macros) introduced by thespkord expr .
In addition to being declaregync , the methods appearing in an interaction e
pression must be accessible according to the usual rules of the language. That
means, for gample, thapublicsync methods of a class might appear in interac-
tion expressions of anclass, whileprivatesync methods might only appear in
interaction &pressions of theirwen class.

Figure 7 shavs an EBNF grammar for interactiompgessions and their irgeation

with the standard ¥ya gammar Here, boldface indicates terminal symbols,d.,

keywords and literal charactersdikeg., static ~ and#, whilei t al i cs denote non-
terminal symbols. More speélly, uppercase names I&kExpr essi on or Type re-

fer to non-terminals of the i@ gammar while the laver-case namexpr refers to a
non-terminal introduced here.

To samplify the presentation, it is assumed that unary operators bind more tightly
than multipliers and quanigfrs, which in turn bind more tightly than binary operators.
The latter are presented in the grammar in decreasing order of precedeateally
enforce these precedence rules in a parser generaabV&CC [18], the grammar
has to be nsritten to contain a separate production feerg level of operator prece-
dence.

C assBodyDecl arati on

| [static] expr expr ; Il Interaction expression.
| { public |protected |private |static |abstract |final @}
expr MethodDeclarator [= expr] ; [/l Interaction macro.

expr
/I Atomic expression.
Met hodl nvocat i on

/I Unary operators.

| ? expr | expr ? [/ Option.

| * expr | expr * [/ Sequential iteration (repetition).
| # expr | expr # [/ Paralleliteration.

/I Binary operators.

| expr - expr /I Sequential composition (sequence).
| expr + expr /I Parallel composition.

| expr | expr /I Disjunction (choice).

| expr & expr /I Conjunction.

| expr @expr /I Synchronization (weak conjunction).
/I Multipliers.

| ¢ - | +) { Expression } expr

/I Quantifiers.
[+1 || &l @) [Type Identifier { [] }] expr

/I Bracketed expressions.
| (expr) | [expr] | { expr }

Figure 7: Grammar of interactiom@essions

Using a rather simple precompil@rograms written in thex¢ended language (called
JavaX) are transformed to purevdacmde along the follwing lines:

* The body of async method is braakted by calls to the methodgnc. prolog()
andsync.epilog() which are statically defed in a library classync .
In principle, both of these methods reeeihe name of thesync method as a
String and an array oDbject instances containing its actual parameters (includ-
ing the implicitthis parameterunless the method matic). Actually, this infor
mation is combined into a single object of tygyec.Expr by the library method
sync.activity() . For technical reasonxplained bela, sync.activity() is
actually called by a so-callshadow methodf the originalsync method which is
needed for seeral additional purposes, too. The shadoethod receies the same
parameters as the original method plus an additional dummy parameter of type
sync.Dummy to obtain a difierent method signature.

®Note thatsync constitutes adyword in the e&tended language aX and thus cannot be used as an iden-
tifier there. Therefore, name collisions with the name of the library class cannot arise.

For example, Fig. 8 shas the code generated for the method:

public sync void read() {
/I body of read

}

While sync.prolog() has to check whether the method in question is currently
permitted by all interactionx@ressions and, if it is not,ait until it becomes per

mitted, sync.epilog() simply registers thedct that the methodkecution hasih-
ished.

An interaction gpression introduced by theyword expr is transformed to an ini-
tializer block which constructs an operator tree representation okgiession at
run time which is passed to the library metlsgik.enable()

For example, Fig. 9 shas the code generated for thegeession:

expr * (# read() | write());
Here, the shadw methods of thesync methodsead() andwrite() are used to

public sync.Expr read(sync.Dummy x) {
return sync.activity("read", new Object [] { this });
}

public void read() {
sync.Expr expr = read(sync.dummy);
sync.prolog(expr);
t

I body of read

}
finally { sync.epilog(expr); }

Figure 8: Tansformation of aync method

sync.enable(
sync.unary(™*,
sync.binary('|',
sync.unary('#,
read(sync.dummy)
),

write(sync.dummy)

)
)
)

Figure 9: Tansformation of an interactioxgression

conveniently obtainsync.Expr objects representing these methods in an operator
tree. Furthermore, by generating code whose correctness depends xistédmee
of these shadw methods, the precompiler gantly delegates to the Ja cwmpiler
the task of checking that ongync methods are used in interactioxpeessions: If
a nonsync method is used, no corresponding shadeethod will be found caus-
ing the Jaa compiler to report an error

Another reason for empling shadw methods here is theaét that it is hard or
even impossible for the precompiler to distinguish the call of iastance
methodb() for an objecta (which receves a as an implicit parameter) from the
call of astatic methodb() of a_class (which does not reced an implicit parame-
ter), as both are writtemb() .’ By simply replacing the original cadlb() with
the calla.b(sync.dummy) of the shade method, this task is ain delgated to
the Jaa compiler.

* An interaction macro defition is transformed to ashadow method dehition
which constructs and returns an operator tree representation aptiesson on the
right hand side of the dettion.

For example, Fig. 10 shws the code generated for the macrardtédn:

expr oc() =* (open() - rw() — close());

Once agin, transforming method\mcations in interactionxressions to calls of
the corresponding shadanethods signi€antly simpliies the precompiles’job as

it need not distinguish “real” methodviscations from interaction macro calls. In
the xample abwe, open() , rw() , andclose() are all transformed in the same
way to corresponding shado method iwvocations without needing to knothat
open() andclose() are normakync methods whilew() is another interaction
macro.

< All other Jaa mde is left unchanged.

sync.Expr oc(sync.Dummy x) { return
sync.unary(*,
sync.binary('-’,
open(sync.dummy),
sync.binary('-’,
rw(sync.dummy),
close(sync.dummy)

Figure 10: Tansformation of an interaction macro idéfon

% The fact that such an error message will not be completely el to a programmer atdt glance, is
a typical shortcoming of a precompiteased approach which is acceptable though.

Because the precompiler is designed to transform a singdX daurce fle without consulting another
JavaX, Java, or class fle, it is indeed impossible to distinguish these cases in general,asmaght be a
field of a superclass deéd in another sourcdd or a class imported by a “type-import-on-demand decla-
ration; respectiely.

6. Implementation of the Accompanying Library Class

The code generated by the precompiler relies veraetypes and static methods de-
fined in the library classync . Roughly, these methods can be aqezed as follas:

« Public methods for constructing operator trees to represent interagpoessions
at run time, eg., activity() , unary() , andbinary()

* Public methods prading the essential operations of the library:

o enable() to activate an interactionx@ression, ie., to add it to an internal set of
expressions;

o prolog() to check whether (resp. toait until) async method is permitted by
all activated interaction xpressions and to gester that the method has started e
ecution;

o epilog() to register that aync method hasifiished &ecution.

 Private methods implementing apemtional modelof interaction gpressions con-
sisting of (hierarchically structuredjates state tansitions and state pedicates
These methods, which constitute the core of the lipeegybased on a precise oper
ational semantics of interactiorgressions which is in turn egalent to the formal
semantics of the formalism. Detailed conxiie analyses hae $own that the oper
ational model, which has been spiegifly optimized for performance, beles wuf-
ficiently well in practice wen for complicated xpressions [6, 7].

Enabling an epression vianable() actually means to compute and stordritgal
state

Calling prolog() at the bginning of async method results in performinstate
transitionsfor all actvated epressions containing the method in ques?itlinall re-
sulting states arealid, prolog() returns immediatelyalowing the body of the
sync method to beecuted. Otherwise, if one of the resulting statemvalid, the
state transitions are undone by restoring theipus states of thexpressions, and
prolog() suspends the current thread until another threadXsastedepilog()
Afterwards, the state transitions are repeated in thestede and, depending on their
validnessprolog() returns or waits agin, and so on.

Calling epilog() at the end of aync method results in performing similar state
transitions for all actiated epressions containing the method, too. In contrast to
prolog() , these transitions will alays yield \alid states because terminating a
method is aliays permitted by interactiorxpressions. Afterards, all threads which
have been suspended during areeution of prolog() are resumed causing their
state transitions to be repeated, as describegeabo

To avoid race conditions in the library itself, all state transitions are performed in-
side appropriateynchronized statements.

810 ofi ciently determine thosexpressions which contain the method in question, the internal sgt of e
pressions mentioned ais actually split into a lage number of @ry small sets which are associated with
individual classes containing stasinc methods and objects of classes containing instsymee methods.

By that means, only one or &vef these small sets b be actually processed at a time.

7. Summary and Outlook

Using two well-knovn examples—the bounded differ and the readers and writers
problem— it has been gued that hand-coded synchronization waJa aumbersome
and erroiprone if mutual eclusion is too simplistic. Furthermore, synchronization
and actual application code are usually entangled in avaurble vay which com-
plicates later modiations or gtensions. In contrast, interactiorpeessions consti-
tute a pwverful and easy-to-use tool to specify synchronization requirements separate
from the application code in a straightf@md and natural ay.

By appropriately tending the grammar of g it has been possible to incorporate
the formalism into the language using a rather simple precompfieractual syn-
chronization is performed by generic library methods implementing a formedly v
fied operational model of interactiorpeessions based on states, state transitions, and
state predicates. Extemsicomplexity analyses guaranteefiefent run time behaour
in principle, &en for complicated xpressions.

On the other hand it is slwus and shall not be hidden that synchronization based
on interaction ®pressions requires some computationaleead compared to simple
synchronized methods or statements which will not bertliwhile for \ery short
and fast methods. If thevarage aecution time of the methods in question isgkar
enough to think about more sophisticated synchronization schemesehdnterac-
tion expressions can be successfully emplib to obtain comprehensi end correct
solutions in a f& minutes. Furthermore, the aatvages of clearly separating synchro-
nization details from the actual application logic, cannotueeemnphasized.

Of course, synchronization in general as well as synchronization of parallel programs
in particular has been a research area feerabdecades, andren the less common

idea to usexpression-based formalisms for that purpose is not really(cfe Sec. 3).
However, dl comparable formalisms suggested apb(e.g., path gpressions [3], syn-
chronization gpressions [5], went expressions [15, 14], and floexpressions [16, 1])
suffer from either a ery limited range of operators pided, a seere lack of orthogo-
nality and generalityor the absence of a practically usable (i.suficiently eficient)
implementation [17]. Therefore, interactioxpeessions hze been degeloped as a uni-
fication and etension of these formalisms whichvegheless possesses afi @ént

(and formally founded) implementation [6, 7]. lgtating such a formalism into\ia

using a simple precompiler which does not really need to “understavalinldetail,

but merely performs some “local” source code transformations, appears to be original.

While the core implementation of interactioxpeessions is ery mature, its difcient
integration into the Ja un time emironment is still in a prototypical stage. In partic-
ular, different stratgies to minimize the duration of critical sections inside
sync.prolog() and sync.epilog() calls (and to completely eliminate unneces-
sary ones) ha © be explored. or example, it might be adintageous to empfapti-
mistic concurreng control protocols instead of traditional locking schemes to syn-
chronize transactions comprising multiple state transitions.

References

[1] T. Araki, N. Tokura: “Flov Languages Equal Recudy Enumerable Lan-
guages.’Acta Informatical5, 1981, 209217.

[2] P. Brinch Hansen: “A Comparison ofwb Synchronizing ConceptsActa Infor
matical (3) 1972, 196-199.

[3] R. H. Campbell, A. N. Habermann: “The Spéwifion of Process Synchroniza-
tion by Rath Expressions.” In: E. Gelenbe, C. Kaiser (e@pemting Systeménter-
national Symposium; Rocquencourt, France, April 1974; Proceedings). Lecture Notes
in Computer Science 16, Springégerlag, Berlin, 1974, 89102.

[4] P. J. Courtois, FHeymans, D. L. Brnas: “Concurrent Control with “Readers” and
“Writers”.” Communications of theGM 14 (10) October 1971, 66568.

[5] L. Guo, K. Salomaa, S.uY “On Synchronization Languages$:indamenta Infor
maticae25 (3+4) March 1996, 423436.

[6] C. Heinlein: Wakflow and Pocess Syronization with Inteaction Expessions
and Giaphs Ph. D. Thesis (in German), Umérsitat Ulm, 2000.

[7] C. Heinlein: “Workflow and Process Synchronization with Interaction Expres-
sions and Graphs.” IfProc. 17th Int. Confon Data Engineering (ICDE)YHeidel-
berg, Germap, April 2001). IEEE Computer Societ§001, 243-252.

[8] C. A. R. Hoare: “Monitors: An Operating System Structuring Conceéporhmu-
nications of the 8M 17 (10) October 1974, 54%57.

[9] J. E. Hopcroft, J. D. Ullimanintroduction to Atomata TheoryLanguaes and
Computation Addison-Vésley, Reading, MA, 1979.

[10] G. Kiczales, J. Lamping, A. Mendhekat. Maeda, C. VLopes, J. Loingtier
J. Irwin: “Aspect-Oriented Programming.” In: M. Aksit (edBCOOP’'97—Object-
Oriented Pogramming (11th European Conference; Jywdsk Finland, June 1997;
Proceedings). Lecture Notes in Computer Science 1241, Spkiedeag, Berlin,
1997.

[11] G.Kiczales, E. Hilsdale, J. Hugunin, Meksten, J. 8m, W G. Griswold: “An
Overview of Aspectl.” In: J. Lindskv Knudsen (ed.)ECOOP 2001-Object-Orient-
ed Pogramming (15th European Conference; Budapest, Huyglune 2001; Pro-
ceedings). Lecture Notes in Computer Science 2072, Spifegkarg, Berlin, 2001.
[12] D. Lea:Concurent Pogramming in &va. Design Principles andaRerns(Sec-
ond Edition). Addison-\&sle/, Reading, MA, 2000.

[13] S.Oaks, H. Véng:Java Theads O'Reilly, Sebastopol, CA, 1999.

[14] W. F Ogden, WE. Riddle, W C. Rounds: “Complgity of Expressions Alla-
ing Concurreng” In: Proc. 5th LM Symp. on Principles of &gramming Lan-
guages. 1978, 185194.

[15] W. E. Riddle: “An Approach to Softare System Belér Description.”Com-
puter Languges 4, 1979, 2947.

[16] A. C. Shav: “Software Description with Fle Expressions.lEEE Transactions
on Softwae EngineeringSE-4 (3) May 1978, 242254,

[17] A. C. Shav: “On the Specitation of Graphics Command Languages and Their
Processors.” In: R. A. Guedj, B W. ten Hagen, FR. A. Hopgood, H. A. Tcker,
D. A. Duce (eds.)Methodolgy of Inteaction (IFIP Workshop on Methodology of
Interaction; Seillac, France, May 1979). North-Holland Publishing Comganster
dam, 1980, 37¥392.

[18] A. Williams: “Java Rarsing Made Easy Web Techniques 9/2001, Septem-
ber 2001, wwwvebtechniques.com/arefes/2001/09/jga.

