
Advanced Thread Synchronization in Jav a

Christian Heinlein

Dept. of Computer Structures, University of Ulm, Germany
heinlein@informatik.uni−ulm.de

Abstract. Thread synchronization in Java using synchronized methods or
statements is simple and straightforward as long as mutual exclusion of threads
is sufficient for an application. Things become less straightforward when
wait() andnotify() have to be employed to realize more flexible synchro-
nization schemes. Using two well-known examples, the bounded buffer and the
readers and writers problem, the snares and traps of hand-coded synchroniza-
tion code and its entanglement with the actual application code are illustrated.
Following that, interaction expressions are introduced as a completely different
approach where synchronization problems are solved in a declarative way by
simply specifying permissible execution sequences of methods. Their integra-
tion into the Java programming language using a simple precompiler and the
basic ideas to enforce the synchronization constraints specified that way are de-
scribed.

1. Introduction

Thread synchronization in Java using synchronized methods or statements is sim-
ple and straightforward as long as mutual exclusion of threads is sufficient for an ap-
plication. Things become less straightforward whenwait() andnotify() (or no-
tifyAll()) hav eto be employed to realize more flexible synchronization schemes.
In that context, things become even more complicated by the fact thatmonitors and
condition variables−− which have been related, but separate entities in the original
monitor concept [8] −− hav ebeen merged into a single unit, namely an object [12, 13].
In practice that means that every Java object used as a monitor possesses only a sin-
gle, implicit condition variable which is the object itself. Therefore, monitor-based so-
lutions of synchronization problems using two or more different condition variables −−
for example, the rather straightforward solution of the well-known bounded buffer
problem shown in Fig. 1 −− are difficult to convert to functionally equivalent and com-
parably comprehensive Java programs. Guaranteeing (and proving) the correctness of
such code is further complicated by the fact thatnotify() (or notifyAll()) does
neither suspend the executing thread (either immediately or at the time it leaves the
monitor, i. e., thesynchronized method or statement it is currently executing) nor
immediately resumes the notified thread. (In other words,notify() does not put the
notified thread in therunning, but only in therunnablestate.) That means that the no-
tifying thread (or even any other currently running thread) might execute the monitor
code several times again before the notified thread is actually able to continue. This
behaviour, which is in contrast to thesignal semantics of the original monitor con-
cept, usually improves performance as it demands fewer thread switches, but on the
other hand increases the typically already high enough possibility of undesired race
conditions even further.

Using the bounded buffer problem already mentioned above, Sec. 2 illustrates these
problems for a typical and not too complicated real-world example. Following that,

monitor Buffer;
const

N = . ..; (* buffer size *)
var

buf: array [0 .. N−1] of integer; (* buffer *)
n: integer := 0; (* number of currently occupied slots *)
p: integer := 0; (* index of next slot for put *)
g: integer := 0; (* index of next slot for get *)
notempty, notfull: condition; (* buffer conditions *)

procedure put(x: integer);
begin

if n = N then wait(notfull);
buf[p] := x;
p : = (p + 1) mod N;
n : = n + 1;
if n = 1 then signal(notempty);

end;

procedure get(var x: integer);
begin

if n = 0 then wait(notempty);
x : = buf[g];
g : = (g + 1) mod N;
n : = n − 1;
if n = N − 1 then signal(notfull);

end;
end.

Figure 1: Monitor-based solution of the bounded buffer problem in a Pascal-like language

Sec. 3 introduces the basic idea ofinteraction expressionsand demonstrates their use
to derive a concise and clear solution of the bounded buffer problem in a few minutes.
In Sec. 4, solutions based on interaction expressions of another well-known synchro-
nization problem, namely the readers and writers problem, are presented and com-
pared with handwritten synchronization code.

Following these deliberately extensive motivating sections, Sec. 5 actually de-
scribes the extensions to the Java programming language which are necessary to use
interaction expressions in Java programs and their basic implementation in a precom-
piler. Section 6 briefly describes the implementation of an accompanying library class
which actually performs the requested synchronization at run time. Finally, Sec. 7
concludes the paper with a summary and outlook.

2. The Bounded Buffer Problem

Figure 2 shows a transformation of the monitor-based solution of the bounded buffer
problem into Java code, where the two explicit condition variablesnotempty and
notfull of Fig. 1 have been merged into the single implicit condition variable asso-

class Buffer {
private final int N = ...;
private int [] buf = new int[N];
private int n = 0, p = 0, g = 0;

public synchronized void put(int x) {
if (n == N) wait();
buf[p] = x;
p = (p + 1) % N;
n++;
if (n == 1) notify();

}

public synchronized int get() {
if (n == 0) wait();
int x = buf[g];
g = (g + 1) % N;
n−−;
if (n == N − 1) notify();
return x;

}
}

Figure 2: Erroneous solution of the bounded buffer problem in Java

ciated with the current objectthis .1 This code would behave correctly if a notified
thread would be guaranteed to continue execution immediately after the notifying
thread has left the monitor. But since such behaviour is not guaranteed in Java, the fol-
lowing erroneous execution sequence might happen in principle and is actually ob-
served in practice:

• Two consumer threads,C1 andC2, call get() on an empty buffer and thus will be
blocked bywait() .

• Then, a producer threadP executesput() causing one of the consumer threads,
C1 or C2, to become awakened bynotify() .

• Howev er, if the currently running threadP has not yet exceeded its time slice, it is
usually allowed to continue running before the awakened thread is actually re-
sumed. Therefore, it might happen thatP executes anotherN calls ofput() before
it becomes blocked bywait() because the buffer has run full.

• Now, the previously awakened consumer thread is actually resumed and completes
its execution ofget() . Because the buffer has become full in the mean time,no-
tify() will be executed at the end ofget() which is assumed to awaken a pro-
ducer thread waiting for the buffer to becomenotfull (cf. Fig. 1).

1 To simplify the examples, the fact thatwait() might throw an InterruptedException , which must be
either caught or declared in the headers ofput() andget() , is ignored.

• Howev er, it might actually happen thatnotify() aw akens the second consumer
thread. (Because this thread has been blocked for a longer time than the producer
threadP, this is indeed quite probable.)

• Before this thread is actually resumed, however, the currently running consumer
thread might execute further calls ofget() until it becomes blocked bywait()
due to an empty buffer.

• Now, the second consumer thread is actually resumed and completes its execution
of get() , despite the fact that the buffer is currently empty!

To avoid such subtle errors, a “brute force” solution resembling the idea ofcondition-
al critical regions [2] might be employed (cf. Fig. 3). This is certainly correct, but
rather inefficient asnotifyAll() always awakens all waiting threads while only
oneof them can actually proceed afterwards. In particular, awakening threads execut-
ing the same method (put() or get()) as the notifying thread is completely unnec-
essary.

class Buffer {
private final int N = ...;
private int [] buf = new int[N];
private int n = 0, p = 0, g = 0;

public synchronized void put(int x) {
while (n == N) wait();
buf[p] = x;
p = (p + 1) % N;
n++;
notifyAll();

}

public synchronized int get() {
while (n == 0) wait();
int x = buf[g];
g = (g + 1) % N;
n−−;
notifyAll();
return x;

}
}

Figure 3: Correct, but inefficient solution of the bounded buffer problem

To complete the example, Fig. 4 shows a correct and maximally efficient solution of
the problem, which even improves the original monitor solution by allowing one pro-
ducer and one consumer thread to operate on the buffer concurrently. Howev er, nei-
ther finding nor verifying this solution is a simple task, and the chance for overlook-
ing another subtle detail is extremely high.

class Buffer {
private final int N = ...;
private int [] buf = new int[N];
private int p = 0, g = 0;
private int empty = N, full = 0;
private Object plock = new Object(), glock = new Object();

public void put(int x) {
synchronized (plock) {

while (empty == 0) plock.wait();
buf[p] = x;
p = (p + 1) % N;
empty−−;

}
synchronized (glock) {

full++;
glock.notify();

}
}

public int get() {
int x;
synchronized (glock) {

while (full == 0) glock.wait();
x = b uf[g];
g = (g + 1) % N;
full−−;

}
synchronized (plock) {

empty++;
plock.notify();

}
return x;

}
}

Figure 4: Correct and maximally efficient solution of the bounded buffer problem

3. Interaction Expressions

Apart from these correctness and efficiency considerations, all solutions presented so
far suffer from an unfavourable intermixing of the actual application code with both-
ering synchronization details. Even in the original monitor solution, more than half of
the code of the methodsput() andget() deals with synchronization. If correct ex-
ecution sequences of these methods could be enforced otherwise, they might actually
be reduced to the following few lines:

void put(int x) {
buf[p] = x;
p = (p + 1) % N;

}

int get() {
int x = buf[g];
g = (g + 1) % N;
return x;

}

Of course, one might argue rightly that developing sophisticated synchronization
schemes for such short and simple methods is a waste of time −− both for the program-
mer who has to write the code and for the run-time system which executes it, because
the latter might be able to schedule threads more efficiently in practice if the methods
were simply declaredsynchronized , even if this is too restrictive from a theoretical
point of view. If reading and writing buffer elements is more costly, howev er, e. g., if
extensive file operations are involved, unnecessary mutual exclusion actually becomes
a considerable performance brake.

Separating different aspects of an application and implementing them independently,
is advocated as a general principle by the current trend ofaspect-oriented program-
ming [10, 11]. The particular idea to separate low-level synchronization details from
the more abstract parts of an application, is quite old, however. In the early 1970s,
path expressionshave been proposed as a simple formalism to describepermissible
execution sequencesof Pascal procedures and by that means to indirectly specifysyn-
chronization conditionsfor them [3]. Similarly, synchronization expressionshave
been developed in the mid 1990s to synchronize statements of concurrent C programs
[5]. Due to several severe restrictions of these and other related formalisms, yet anoth-
er similar approach calledinteraction expressionshas been developed recently [6, 7].

The basic idea is always the same, however: A formalism based on extended regu-
lar expressions is used to describe synchronization conditions for statements, proce-
dures, or methods separately from the actual application code in a very flexible and
comfortable way. The languageof such an expression (or set of expressions), i.e., the
set ofwords it accepts [9], is interpreted as the set ofpermissible execution sequences
of these code units. To actually enforce the constraints specified by such expressions,
they are transformed into some suitable state model by the compiler or an appropriate
precompiler. Furthermore, all methods (or other code units) occurring in one or more
expressions are bracketed by a prologue and an epilogue which perform correspond-
ing state transitions if they are currently permitted or otherwise wait until they be-
come permitted.

To giv e a concrete example, consider the interaction expression

expr * (|[int x] put(x) − get());

where the operators− and * denote sequence and repetition, respectively, and
|[int x] put(x) is roughly equivalent toput() .2 Furthermore, interaction expres-
sions are introduced by the keyword expr and terminated by a semicolon. Because

2 Because methods might be overloaded, the subexpression|[int x] put(x) , specifying thatput(x)
might be executed withany int value x , must be used instead of simplyput() to correctly refer to the
method with the signatureput(int x) .

this expression is almost equivalent to the regular expression(put get)* possessing
the language

{ 〈〉, 〈put, get〉, 〈put, get, put, get〉, . . . } ,

it specifies that the methodsput() andget() have to be executed in alternating se-
quence starting withput() . This is the required behaviour, if the buffer would pos-
sess just a single slot, i.e., for the caseN = 1.

For N = 2, two such sequences might be executedconcurrently and independently
(which can be expressed by the parallel composition operator+), if groups ofput() s
and groups ofget() s are both executed sequentially (which can be expressed by rep-
etition operators*). This leads to the following set of interaction expressions:

// Allow two concurrent alternating sequences
// of put() and get().
expr * (|[int x] put(x) − get())

+ * (| [int x] put(x) − get());

// Enforce sequential execution
// of multiple put()s and multiple get()s.
expr * |[int x] put(x);
expr * get();

To specify for any N that N alternating sequences ofput() andget() might be ex-
ecuted concurrently, a multiplier expression+{N} body can be used to abbreviate the
expressionbody + . .. + body for any subexpressionbody :

// Allow N concurrent alternating sequences
// of put() and get().
expr +{N} * (|[int x] put(x) − get());

In practice, this expression avoids buffer underflows (because each execution of
get() requires a preceding execution ofput()) as well as buffer overflows (because
each execution ofput() in one of theN concurrent alternating sequences requires a
successive execution ofget() before another execution ofput() is permitted in the
same sequence).

Compared with the explicit synchronization shown in Fig. 4, whose development is
time-consuming, error-prone, and hard to understand and verify, dev eloping the equiv-
alent interaction expressions shown above is a straightforward task taking a few min-
utes after a little training of the formalism (which can be done instead of strenuously
studying textbooks on the synchronization of Java threads to avoid the pitfalls out-
lined in Sec. 2).

Remark:Because this paper does not constitute a tutorial on interaction expressions,
but rather a description of their integration and typical use in Java, the formalism itself
is not explained in more detail. Nevertheless, the examples given in the present and
subsequent section are intended to give the reader a taste of the formalism’s expres-
siveness and applicability.

4. The Readers and Writers Problem

The well-known readers and writers problem −− a data object might be accessed by
several readers simultaneously, while a writer needs exclusive access [4] −− is another
example of a synchronization problem where simple mutual exclusion is unsatisfacto-
ry when the read and write operations take non-neglectable time. Figure 5 shows a
possible solution in Java, which is fairly compact and comprehensive.3 On the other
hand, Fig. 6 shows an equivalent solution with interaction expressions4 which is even
more compact and comprehensive as well as less error-prone and much easier to adapt
to additional requirements. To specify, for instance, that the first operation must be
write() (to guarantee proper initialization of the data object), this is simply achieved
by replacing the interaction expression with the following:

expr write() − * (# read() | write());

If additional operationscreate() , open() , close() , and destroy() are intro-
duced, the expressions

expr rw() = write() − * (# read() | write());
expr oc() = * (open() − rw() − close());
expr * (create() − oc() − destroy());

(whererw() andoc() are interaction macros whose calls are replaced by their right
hand side in subsequent interaction expressions or macros) can be used to specify the
permitted execution sequences in a simple and natural way without disturbing any of
the method bodies, while extending the solution of Fig. 5 in an equivalent manner
would require the introduction of several auxiliary “state variables” and substantial
extensions to the methods involved.

class ReadWrite {
int n = 0; // Number of currently executing readers.
...... // Other data fields.

public void read() {
synchronized (this) { n++; }
...... // Actual read operation.
synchronized (this) { if (−−n == 0) notifyAll(); }

}

public synchronized void write() {
while (n > 0) wait();
...... // Actual write operation.

}
}

Figure 5: Solution of the readers and writers problem in Java

3 To simplify the example, the parameters ofread() andwrite() are omitted.
4 The operator# permits any number ofread() s to be executed concurrently, while the typical pattern
* (...|...) (where| denotes choice) specifies that readers and writers are mutually exclusive.
They keyword sync indicates that the methodsread() andwrite() are subject to synchronization by in-
teraction expressions (cf. Sec. 5).

class ReadWrite {
...... // Other data fields.

// Interaction expression to synchronize read() and write().
expr * (# read() | write());

public sync void read() {
...... // Actual read operation.

}

public sync void write() {
...... // Actual write operation.

}
}

Figure 6: Solution of the readers and writers problem with interaction expressions

5. Jav a Language Extensions

To actually allow a programmer to solve synchronization problems occurring in a Java
program by means of interaction expressions, two extensions to the Java programming
language are necessary:

1. Methodsmight be declaredsync to indicate that they are subject to synchroniza-
tion by interaction expressions.
Only methods declared that way are allowed to appear in interaction expressions,
and async method of a superclass (or an interface) must not be overridden by a
non-sync method in a subclass (or an implementing class).

2. Classes(and, in a limited way, interfaces, too) might contain interaction expres-
sions (and macros) introduced by the keyword expr .
In addition to being declaredsync , the methods appearing in an interaction ex-
pression must be accessible according to the usual rules of the language. That
means, for example, thatpublic sync methods of a class might appear in interac-
tion expressions of any class, whileprivate sync methods might only appear in
interaction expressions of their own class.

Figure 7 shows an EBNF grammar for interaction expressions and their integration
with the standard Java grammar. Here, boldface indicates terminal symbols, i.e.,
keywords and literal characters like, e.g., static and#, while italics denote non-
terminal symbols. More specifically, upper-case names like Expression or Type re-
fer to non-terminals of the Java grammar, while the lower-case nameexpr refers to a
non-terminal introduced here.

To simplify the presentation, it is assumed that unary operators bind more tightly
than multipliers and quantifiers, which in turn bind more tightly than binary operators.
The latter are presented in the grammar in decreasing order of precedence. To actually
enforce these precedence rules in a parser generator like JavaCC [18], the grammar
has to be rewritten to contain a separate production for every level of operator prece-
dence.

ClassBodyDeclaration
:
| [static] expr expr ; // Interaction expression.
| { public | protected | private | static | abstract | final }

expr MethodDeclarator [= expr] ; // Interaction macro.

expr
// Atomic expression.
: MethodInvocation

// Unary operators.
| ? expr | expr ? // Option.
| * expr | expr * // Sequential iteration (repetition).
| # expr | expr # // Parallel iteration.

// Binary operators.
| expr − expr // Sequential composition (sequence).
| expr + expr // Parallel composition.
| expr | expr // Disjunction (choice).
| expr & expr // Conjunction.
| expr @expr // Synchronization (weak conjunction).

// Multipliers.
| (− | +) { Expression } expr

// Quantifiers.
| (+ | | | & | @) [Type Identifier { [] }] expr

// Bracketed expressions.
| (expr) | [expr] | { expr }

Figure 7: Grammar of interaction expressions

Using a rather simple precompiler, programs written in the extended language (called
JavaX) are transformed to pure Java code along the following lines:

• The body of async method is bracketed by calls to the methodssync.prolog()
andsync.epilog() which are statically defined in a library classsync .5

In principle, both of these methods receive the name of thesync method as a
String and an array ofObject instances containing its actual parameters (includ-
ing the implicitthis parameter, unless the method isstatic). Actually, this infor-
mation is combined into a single object of typesync.Expr by the library method
sync.activity() . For technical reasons explained below, sync.activity() is
actually called by a so-calledshadow methodof the originalsync method which is
needed for several additional purposes, too. The shadow method receives the same
parameters as the original method plus an additional dummy parameter of type
sync.Dummy to obtain a different method signature.

5 Note thatsync constitutes a keyword in the extended language JavaX and thus cannot be used as an iden-
tif ier there. Therefore, name collisions with the name of the library class cannot arise.

For example, Fig. 8 shows the code generated for the method:

public sync void read() {
// body of read

}

While sync.prolog() has to check whether the method in question is currently
permitted by all interaction expressions and, if it is not, wait until it becomes per-
mitted,sync.epilog() simply registers the fact that the method execution has fin-
ished.

• An interaction expression introduced by the keyword expr is transformed to an ini-
tializer block which constructs an operator tree representation of the expression at
run time which is passed to the library methodsync.enable() .
For example, Fig. 9 shows the code generated for the expression:

expr * (# read() | write());

Here, the shadow methods of thesync methodsread() andwrite() are used to

public sync.Expr read(sync.Dummy x) {
return sync.activity("read", new Object [] { this });

}

public void read() {
sync.Expr expr = read(sync.dummy);
sync.prolog(expr);
try {

// body of read
}
finally { sync.epilog(expr); }

}

Figure 8: Transformation of async method

{
sync.enable(

sync.unary(’*’,
sync.binary(’|’,

sync.unary(’#’,
read(sync.dummy)

),
write(sync.dummy)

)
)

);
}

Figure 9: Transformation of an interaction expression

conveniently obtainsync.Expr objects representing these methods in an operator
tree. Furthermore, by generating code whose correctness depends on the existence
of these shadow methods, the precompiler elegantly delegates to the Java compiler
the task of checking that onlysync methods are used in interaction expressions: If
a non-sync method is used, no corresponding shadow method will be found caus-
ing the Java compiler to report an error.6

Another reason for employing shadow methods here is the fact that it is hard or
ev en impossible for the precompiler to distinguish the call of aninstance
methodb() for an objecta (which receives a as an implicit parameter) from the
call of astaticmethodb() of a classa (which does not receive an implicit parame-
ter), as both are writtena.b() .7 By simply replacing the original calla.b() with
the calla.b(sync.dummy) of the shadow method, this task is again delegated to
the Java compiler.

• An interaction macro definition is transformed to ashadow method definition
which constructs and returns an operator tree representation of the expression on the
right hand side of the definition.
For example, Fig. 10 shows the code generated for the macro definition:

expr oc() = * (open() − rw() − close());

Once again, transforming method invocations in interaction expressions to calls of
the corresponding shadow methods significantly simplifies the precompiler’s job as
it need not distinguish “real” method invocations from interaction macro calls. In
the example above, open() , rw() , and close() are all transformed in the same
way to corresponding shadow method invocations without needing to know that
open() andclose() are normalsync methods whilerw() is another interaction
macro.

• All other Java code is left unchanged.

sync.Expr oc(sync.Dummy x) { return
sync.unary(’*’,

sync.binary(’−’,
open(sync.dummy),
sync.binary(’−’,

rw(sync.dummy),
close(sync.dummy)

)
)

);
}

Figure 10: Transformation of an interaction macro definition

6 The fact that such an error message will not be completely self-evident to a programmer at first glance, is
a typical shortcoming of a precompiler-based approach which is acceptable though.
7 Because the precompiler is designed to transform a single JavaX source file without consulting any other
JavaX, Java, or class file, it is indeed impossible to distinguish these cases in general, sincea might be a
field of a superclass defined in another source file or a class imported by a “type-import-on-demand decla-
ration,” respectively.

6. Implementation of the Accompanying Library Class

The code generated by the precompiler relies on several types and static methods de-
fined in the library classsync . Roughly, these methods can be categorized as follows:

• Public methods for constructing operator trees to represent interaction expressions
at run time, e.g., activity() , unary() , and binary() .

• Public methods providing the essential operations of the library:

enable() to activate an interaction expression, i.e., to add it to an internal set of
expressions;

prolog() to check whether (resp. to wait until) async method is permitted by
all activated interaction expressions and to register that the method has started ex-
ecution;

epilog() to register that async method has finished execution.

• Private methods implementing anoperational modelof interaction expressions con-
sisting of (hierarchically structured)states, state transitions, and state predicates.
These methods, which constitute the core of the library, are based on a precise oper-
ational semantics of interaction expressions which is in turn equivalent to the formal
semantics of the formalism. Detailed complexity analyses have shown that the oper-
ational model, which has been specifically optimized for performance, behaves suf-
ficiently well in practice even for complicated expressions [6, 7].

Enabling an expression viaenable() actually means to compute and store itsinitial
state.

Calling prolog() at the beginning of async method results in performingstate
transitionsfor all activated expressions containing the method in question.8 If all re-
sulting states arevalid, prolog() returns immediately, allowing the body of the
sync method to be executed. Otherwise, if one of the resulting states isinvalid, the
state transitions are undone by restoring the previous states of the expressions, and
prolog() suspends the current thread until another thread has executedepilog() .
Afterwards, the state transitions are repeated in the new state and, depending on their
validness,prolog() returns or waits again, and so on.

Calling epilog() at the end of async method results in performing similar state
transitions for all activated expressions containing the method, too. In contrast to
prolog() , these transitions will always yield valid states because terminating a
method is always permitted by interaction expressions. Afterwards, all threads which
have been suspended during an execution of prolog() are resumed causing their
state transitions to be repeated, as described above.

To avoid race conditions in the library itself, all state transitions are performed in-
side appropriatesynchronized statements.

8 To eff i ciently determine those expressions which contain the method in question, the internal set of ex-
pressions mentioned above is actually split into a large number of very small sets which are associated with
individual classes containing staticsync methods and objects of classes containing instancesync methods.
By that means, only one or two of these small sets have to be actually processed at a time.

7. Summary and Outlook

Using two well-known examples −− the bounded buffer and the readers and writers
problem −−, it has been argued that hand-coded synchronization in Java is cumbersome
and error-prone if mutual exclusion is too simplistic. Furthermore, synchronization
and actual application code are usually entangled in an unfavourable way which com-
plicates later modifications or extensions. In contrast, interaction expressions consti-
tute a powerful and easy-to-use tool to specify synchronization requirements separate
from the application code in a straightforward and natural way.

By appropriately extending the grammar of Java, it has been possible to incorporate
the formalism into the language using a rather simple precompiler. The actual syn-
chronization is performed by generic library methods implementing a formally veri-
fied operational model of interaction expressions based on states, state transitions, and
state predicates. Extensive complexity analyses guarantee efficient run time behaviour
in principle, even for complicated expressions.

On the other hand it is obvious and shall not be hidden that synchronization based
on interaction expressions requires some computational overhead compared to simple
synchronized methods or statements which will not be worthwhile for very short
and fast methods. If the average execution time of the methods in question is large
enough to think about more sophisticated synchronization schemes, however, interac-
tion expressions can be successfully employed to obtain comprehensive and correct
solutions in a few minutes. Furthermore, the advantages of clearly separating synchro-
nization details from the actual application logic, cannot be overemphasized.

Of course, synchronization in general as well as synchronization of parallel programs
in particular has been a research area for several decades, and even the less common
idea to use expression-based formalisms for that purpose is not really new (cf. Sec. 3).
However, all comparable formalisms suggested so far (e.g., path expressions [3], syn-
chronization expressions [5], event expressions [15, 14], and flow expressions [16, 1])
suffer from either a very limited range of operators provided, a severe lack of orthogo-
nality and generality, or the absence of a practically usable (i.e., sufficiently efficient)
implementation [17]. Therefore, interaction expressions have been developed as a uni-
fication and extension of these formalisms which nevertheless possesses an efficient
(and formally founded) implementation [6, 7]. Integrating such a formalism into Java
using a simple precompiler which does not really need to “understand” Java in detail,
but merely performs some “local” source code transformations, appears to be original.

While the core implementation of interaction expressions is very mature, its efficient
integration into the Java run time environment is still in a prototypical stage. In partic-
ular, different strategies to minimize the duration of critical sections inside
sync.prolog() and sync.epilog() calls (and to completely eliminate unneces-
sary ones) have to be explored. For example, it might be advantageous to employ opti-
mistic concurrency control protocols instead of traditional locking schemes to syn-
chronize transactions comprising multiple state transitions.

References

[1] T. Araki, N. Tokura: “Flow Languages Equal Recursively Enumerable Lan-
guages.”Acta Informatica15, 1981, 209−−217.
[2] P. Brinch Hansen: “A Comparison of Two Synchronizing Concepts.”Acta Infor-
matica1 (3) 1972, 190−−199.
[3] R. H. Campbell, A. N. Habermann: “The Specification of Process Synchroniza-
tion by Path Expressions.” In: E. Gelenbe, C. Kaiser (eds.):Operating Systems(Inter-
national Symposium; Rocquencourt, France, April 1974; Proceedings). Lecture Notes
in Computer Science 16, Springer-Verlag, Berlin, 1974, 89−−102.
[4] P. J. Courtois, F. Heymans, D. L. Parnas: “Concurrent Control with “Readers” and
“Writers”.” Communications of the ACM 14 (10) October 1971, 667−−668.
[5] L. Guo, K. Salomaa, S. Yu: “On Synchronization Languages.”Fundamenta Infor-
maticae25 (3+4) March 1996, 423−−436.
[6] C. Heinlein: Workflow and Process Synchronization with Interaction Expressions
and Graphs. Ph. D.Thesis (in German), Universität Ulm, 2000.
[7] C. Heinlein: “Workflow and Process Synchronization with Interaction Expres-
sions and Graphs.” In:Proc. 17th Int. Conf. on Data Engineering (ICDE)(Heidel-
berg, Germany, April 2001). IEEE Computer Society, 2001, 243−−252.
[8] C. A. R. Hoare: “Monitors: An Operating System Structuring Concept.”Commu-
nications of the ACM 17 (10) October 1974, 549−−557.
[9] J. E. Hopcroft, J. D. Ullman:Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, MA, 1979.
[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier,
J. Irwin: “Aspect-Oriented Programming.” In: M. Aksit (ed.):ECOOP’97 −− Object-
Oriented Programming (11th European Conference; Jyväskylä, Finland, June 1997;
Proceedings). Lecture Notes in Computer Science 1241, Springer-Verlag, Berlin,
1997.
[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold: “An
Overview of AspectJ.” In: J. Lindskov Knudsen (ed.):ECOOP 2001 −− Object-Orient-
ed Programming (15th European Conference; Budapest, Hungary, June 2001; Pro-
ceedings). Lecture Notes in Computer Science 2072, Springer-Verlag, Berlin, 2001.
[12] D. Lea:Concurrent Programming in Java. Design Principles and Patterns(Sec-
ond Edition). Addison-Wesley, Reading, MA, 2000.
[13] S.Oaks, H. Wong:Java Threads. O’Reilly, Sebastopol, CA, 1999.
[14] W. F. Ogden, W. E. Riddle, W. C. Rounds: “Complexity of Expressions Allow-
ing Concurrency.” I n: Proc. 5th ACM Symp. on Principles of Programming Lan-
guages. 1978, 185−−194.
[15] W. E. Riddle: “An Approach to Software System Behavior Description.”Com-
puter Languages 4, 1979, 29−−47.
[16] A. C. Shaw: “Software Description with Flow Expressions.”IEEE Transactions
on Software EngineeringSE-4 (3) May 1978, 242−−254.
[17] A. C. Shaw: “On the Specification of Graphics Command Languages and Their
Processors.” In: R. A. Guedj, P. J. W. ten Hagen, F. R. A. Hopgood, H. A. Tucker,
D. A. Duce (eds.):Methodology of Interaction (IFIP Workshop on Methodology of
Interaction; Seillac, France, May 1979). North-Holland Publishing Company, Amster-
dam, 1980, 377−−392.
[18] A. Williams: “Java Parsing Made Easy.” Web Techniques 9/2001, Septem-
ber 2001, www.webtechniques.com/archives/2001/09/java.

