
Local Virtual Functions

Christian Heinlein

Dept. of Computer Structures, University of Ulm, Germany
heinlein@informatik.uni-ulm.de

Abstract. Local functions provided by classical procedural programming lan-
guages are a useful concept for structuring and decomposing large functions into
smaller and more comprehensible pieces. This is even more useful if local func-
tions can be passed as parameters to other functions. On the other hand, this creates
the problem of dangling function references, i. e., references to local functions
whose enclosing function has terminated. To solve this problem, local virtual func-
tions are presented as a restricted form of local functions which do not constitute
functions in their own right, but are merely temporary redefinitions of already ex-
isting global functions. As such, local virtual functions turn out to be a straightfor-
ward generalization of global virtual functions proposed earlier by the author. Af-
ter introducing the basic concepts, different applications are described which
demonstrate its usefulness. In particular, exception handling with the possibility of
resumption becomes possible, even in a language without an exception handling
mechanism. Furthermore, the basic ideas to implement local virtual functions by
means of a precompiler for C++ are explained.

1 Introduction

Local functions, i. e., functions (or procedures, methods, etc.) defined inside other func-
tions, are provided by classical procedural programming languages such as Algol, Ada,
and Pascal (including its successors Modula-2, Oberon, and Oberon-2), as well as many
functional programming languages. On the other hand, languages influenced directly or
indirectly by C, e. g., C++, C#, and Java, do not provide this possibility, and so many
programmers today have got accustomed to live without it. Even though methods of lo-
cal classes, i. e., classes defined inside functions, are similar to local functions at first
sight, they suffer from severe restrictions, in particular that local variables of enclosing
functions must not be used at all (e. g., in C++ [St00]) or only if they hav e been declared
final (e. g., in Java [GJS96]). However, exactly the possibility to directly use local va-
riables and parameters of enclosing functions without restrictions is one of the key ad-
vantages of local functions that distinguishes them from global functions (or methods of
global classes). As has been shown in [He03a], this is even more advantageous if local
functions can be passed as parameters to other functions which will use them as callback
functions, e. g., to compare objects in a sorting algorithm or to perform some arbitrary
action for each element of a tree during a traversal.

Unfortunately, passing around references to local functions is potentially dangerous
for the same reason that passing around references to local variables is dangerous: One
might easily end up with dangling references, i. e., references to objects or functions

which do not exist anymore since their enclosing function has terminated. To avoid this,
the author has proposed syntactic rules to exclude the possibility of dangling function
references by definition [He03a]. Here, the basic rule says that global and local functions
might be freely passed as parameters to other functions, but must not be stored in more
global variables, i. e., variables whose lifetime might exceed the lifetime of the refer-
enced function. Even though this basic rule is rather simple and straightforward, several
additional −− and less straightforward −− rules are needed to cover all practically relevant
cases.

Therefore, a completely different approach to avoid the problem of dangling function
references, called local virtual functions, is presented in the current paper. Here, the ba-
sic idea is that local functions are not functions in their own right, but only temporary re-
definitions (or overridings) of already existing −− but possibly empty −− global functions.
By that means, a reference to a local function f is actually a reference to the global
function f which is temporarily redefined during the execution of some other function g
(or a part of it). Therefore, calling f via a reference while g is being executed, actually
executes the “local function” f, i. e., the temporary redefinition of the global function f.
On the other hand, if f is called (either directly or via a reference) after the enclosing
function g has terminated, the original global function f will be executed; in particular,
the behaviour of such a call is always well-defined, in contrast to calling a truly local
function via a dangling reference.

Since the same global function might be redefined multiple times by nestedly called
other functions, a stack of temporary redefinitions might evolve, and a call to the func-
tion always executes the latest redefinition, i. e., the one that is currently on top of the
stack. This behaviour fits very well with the concept of global virtual functions proposed
earlier by the author [He03b, He05], where global functions can be redefined perma-
nently by building up a list of redefinitions (which are also called branches of the func-
tion). Again, a call to the function always executes the latest redefinition, i. e., the last
branch of this list, which is able to call the previous branch on demand, etc.

Section 2 briefly reviews the basic concept of global virtual functions and its generaliza-
tion to local virtual functions. Furthermore, it introduces the idea of non-local jump
statements, i. e., the possibility to use return (or break/continue) statements in a lo-
cal function to immediately terminate an enclosing function (or a loop/an iteration of it).
Section 3 describes four different application scenarios where local virtual functions turn
out to be useful: temporary redefinitions of global functions, semi-global variables, itera-
tor functions, and exception handling with the possibility of resumption. Section 4
sketches the basic ideas to implement local virtual functions as a language extension for
C++, even though the concept as such is actually language-independent. Finally, Sec. 5
concludes the paper with a discussion of related work.

2 Concept

2.1 Global Virtual Functions

The concept of global virtual functions has been introduced earlier in [He03b], where
they hav e been called dynamic class methods in Java, since class methods (i. e., static
methods) in Java are comparable to global functions in other languages, as well as in
[He05], where they hav e been called virtual namespace functions, since “global” func-
tions in C++ might also be defined in namespaces.

Using C++ as the base language in the sequel, the basic idea is that a global function
declared with the keyword virtual −− which must only be applied to member functions
of classes in original C++ −− might be redefined or overridden with a new implementa-
tion later by simply providing a new definition of the function (which would lead to a
compile time error for ordinary global functions). This kind of redefinition might be per-
formed any number of times, and each new implementation (also called a branch of the
function) is able to call the previous implementation (previous branch) on demand. By
that means, a linear list of branches is built up, and a call to the function always calls the
latest redefinition, i. e., the last branch of this list.

If all branches of a function are defined in the same translation unit, the notions of
“later,” “previous,” and “last” simply refer to the textual order of the definitions. Other-
wise, i. e., if branches are distributed over multiple translation units, a simple module
concept similar to Modula-2 and Oberon [Wi88] is used to define a unique initialization
order of modules which in turn defines a unique activation order of branches. This is
described in more detail in [He05], but is actually irrelevant for the present paper.

2.2 Local Virtual Functions

Local virtual functions are a straightforward extension of global virtual functions, allow-
ing a global virtual function to be temporarily redefined by a local branch, i. e., a branch
defined locally in another function. This other function might be any kind of C++ func-
tion, i. e., an ordinary global function, a global branch of a global virtual function, or
ev en a local branch of a global virtual function, leading to nested local functions. Fur-
thermore, member functions of classes, including static member functions, constructors,
destructors, and conversion functions, might also contain local virtual function defini-
tions. Finally, overloaded operators are treated just like other functions, i. e., they might
be both defined as global virtual functions and contain local virtual function definitions.

A local branch of a global virtual function is activated , i. e., pushed on the stack of lo-
cal redefinitions of its function, when the control flow of its statically enclosing function
reaches its definition. It is deactivated , i. e., popped from the stack of redefinitions, when
the block (or compound statement) containing its definition is left in any way, either nor-
mally by reaching its end or abruptly due to the execution of a throw expression or a
return, break, continue, or goto statement (including non-local jump statements,
cf. Sec. 2.3). Thus, the time of activation resp. deactivation corresponds exactly to the
time where a constructor resp. destructor of a local variable defined instead of the local

branch would be executed. Expressed differently, this means that a local redefinition of a
global virtual function is in effect from its point of definition until the end of the enclos-
ing block.

Even though C++ does not provide a notion of threads as part of the language, a sepa-
rate stack of local redefinitions of a function is maintained for every thread of a program,
if multi-threading is provided by some library. Thus, for every global virtual function,
there is a global list of its global branches plus a thread-local stack of its currently active
local branches per thread. A call to the function from within a particular thread executes
the local branch on top of its stack (if any), whose previous branch is either the next low-
er branch on the stack (if any) or else the last branch of the global list, etc. (cf. Fig. 1).

global
list

stack of
thread 1

stack of
thread 2

Figure 1: Global and thread-local branches of a global virtual function

2.3 Non-Local Jump Statements

When a jump statement, i. e., a return, break, continue, or goto statement, is ex-
ecuted within a local function, its effect is, of course, local to this function, i. e., a re-
turn statement terminates the local function, while a break, continue, or goto state-
ment transfers control to the appropriate place within this function.

Occasionally, howev er, it might be useful to perform a non-local jump, i. e., to execute
a statement that transfers control out of the local function to a place within (one of) its
enclosing function(s). (Since a local function is in effect only while its enclosing func-
tion is executing, transferring control to the latter is basically possible.) For example, one
might want to execute a return statement that immediately terminates the enclosing
function or a break/continue statement that immediately terminates/continues a loop
within the enclosing function. For that purpose, it is possible to prefix a return, break,
or continue statement1 with one or more extern keywords to indicate that the state-
ment shall be executed as if it were part of the nth statically enclosing function where n
is the number of extern keywords given (cf. Fig. 2).

Executing such a non-local jump statement obviously causes abrupt termination of the
function executing it as well as all intermediate functions that have been called directly
and indirectly from the respective enclosing function. To stay compatible with common
C++ semantics, terminating these functions implies the process of stack unwinding
where destructors for all local variables declared in these functions are executed in re-
verse order of their constructor invocations. Therefore, the effect of a non-local jump

1 goto statements are excluded, because their use is generally discouraged and could easily lead to very com-
plicated control flows when variable declarations with (explicit or implicit) initializations are crossed by a
jump.

// Global virtual function f.
virtual int f () { return 0; }

// Ordinary global function g.
bool g () {

// Loop statement in g.
while (......) {

// Local redefinition of f.
virtual int f () {

// Loop statement in local f.
while (......) {

// Terminate loop statement in local f.
if (......) break;

// Terminate loop statement in g.
if (......) extern break;

// Terminate local f with result 1.
if (......) return 1;

// Terminate g with result true.
if (......) extern return true;

}
}

// Code calling f directly or indirectly.
......

}
}

Figure 2: Example of non-local jump statements

statement is equivalent to throwing an exception that is caught at the appropriate place in
the designated enclosing function and executing the corresponding ordinary jump state-
ment from that place. The “appropriate place” in the enclosing function would be a
catch block associated with a try block replacing the innermost block containing the
local function definition.

3 Applications

3.1 Temporary Redefinitions of Functions

As will be described in more detail in Sec. 4.1, global virtual function definitions appear-
ing in a C++ program are transformed to ordinary C++ functions (possessing some
unique, system-generated name), plus some auxiliary data structures and functions, by
means of a precompiler. This precompiler has been implemented by extending the EDG

C++ Front End2 (simply called parser in the sequel) using global and local virtual func-
tions, too, i. e., the final version of the precompiler is implemented by using its “own”
language extensions.

To actually transform a global virtual function definition such as

virtual R f (P1 x1, ..., Pn xn) { }

to an ordinary C++ function definition such as

R f__1234 (P1 x1, ..., Pn xn) { }

the function parse_decl3, which is called by the original parser to parse all kinds of
declarations, has been permanently overridden by a branch that checks whether a global
declaration starts with the keyword virtual (which is not allowed in normal C++
code). If this is the case, the keyword is removed, and the original implementation of
parse_decl is called (using the keyword virtual as the name of a parameterless
pseudo-function which calls the previous branch with the same arguments as the current
branch) to parse the subsequent declaration as a normal function declaration (cf. Fig. 3).

However, to replace the original name of the function (f in the example) with some
other name (f__1234), the function parse_decl_id, which is called indirectly by the
original implementation of parse_decl to parse a “declarator id” (i. e., the name de-
clared by a declaration), is temporarily overridden in this redefinition of parse_decl,
before calling its original implementation, by a local virtual function that replaces the
current token (f) with a different identifier (f__1234) before calling its original imple-
mentation.

By employing this strategy, language extensions such as global and local virtual func-
tions can be implemented in a strictly modular way, i. e., without changing a single line
of existing parser source code, and without needing a deep understanding of the parser’s
work.

3.2 Semi-Global Variables

The EDG parser mentioned in the previous section also contains two back ends to repro-
duce the parsed program, either as C or as C++ code. (The latter is actually used to im-
plement the mentioned precompiler.) These back ends make heavy use of a large suite of
output functions, such as print_type, print_const, print_var, etc. Since the pre-
cise output format depends on a large number of parameters (first of all, whether C or
C++ code shall be produced, but also whether names must be qualified in particular con-
texts or not, etc.), each such function receives a pointer to a corresponding parameter
record as an argument, which is inspected on demand and passed down to nested invoca-
tions of other output functions. (For example, print_type calls print_const if the
type to print is a template id such as X<1> possessing an integer constant as a template
argument.)

2 See http://www.edg.com
3 Function names and signatures have been changed resp. omitted, both to abstract from unimportant details
and to respect the confidential disclosure agreement made with EDG.

// Global redefinition of parse_decl.
virtual void parse_decl (......) {

// If the current token is the keyword "virtual":
if (......) {

// Remove the current token.
......

// Local redefinition of parse_decl_id.
virtual void parse_decl_id (......) {

// Replace current identifier.
......

// Call original implementation of parse_decl_id.
virtual();

}

// Call original implementation of parse_decl
// with redefinition of parse_decl_id in effect.
virtual();

// Perform additional transformations.
......

}
else {

// Delegate call to original implementation of parse_decl.
virtual();

}
}

Figure 3: Transformation of global virtual function definitions

Since every output function needs this parameter record and usually passes it down
unchanged, it is tempting to provide it as a global data structure instead of declaring it as
a parameter for every function. Alternatively, one could employ local virtual functions as
follows to make this information semi-global and to pass it implicitly from one function
call to another.

First, a parameterless global virtual function (call it info) is defined which returns a
pointer to a default parameter record. Whenever an output function needs a particular pa-
rameter value, it calls this function to obtain the required information. If a client wants to
call an output function with different parameters, it temporarily redefines the function
info with a local virtual function returning a pointer to a different parameter record, be-
fore calling the output function (cf. Fig. 4).

By employing this strategy, both the potential dangers of truly global variables (espe-
cially in multi-threaded programs) and the burden of declaring additional parameters for
many functions and passing down the same information from one function call to anoth-
er can be avoided.

// Parameter record.
struct ParmRec { };

// Return pointer to default parameter record.
virtual ParmRec* info () { }

// Print constant c.
void print_const (Const* c) {

// Call info to obtain parameter values.
...... info()−>flag

}

// Print type t.
void print_type (Type* t) {

// Call info to obtain parameter values.
...... info()−>another_flag

// Call print_const to print constants.
print_const(......);

......
}

// Client using output functions.
void client () {

// Local redefinition of info.
virtual ParmRec* info () {

// Return pointer to different parameter record.
......

}

// Call output functions.
print_type(......);
print_const(......);
......

}

Figure 4: Example of semi-global variables

3.3 Iterator Functions

The GNU C library provides a function twalk that traverses a binary tree and executes a
callback function passed as an argument for every node of the tree. Apart from the fact
that C lacks language support for type-safe and convenient generic functions (i. e., tem-
plates as provided by C++), the usage of this function is complicated by the fact that the
callback function containing the “loop body,” i. e., the code that shall be executed for
ev ery element of the tree, must be a separate global function that cannot access the local
variables of the function containing the actual “loop,” i. e., the call to twalk. This is one
of the reasons why modern container libraries such as the C++ Standard Template Li-

brary or the Java Collection Framework provide the concept of iterators acting as logical
pointers to container elements, instead of iterator functions such as twalk.

If, however, local functions are available and can be passed as arguments to other
functions, iterator functions similar to twalk can be used rather conveniently. For exam-
ple, in C++ one might define a (template) function loop that uses an iterator i to iterate
through an arbitrary container c of type C and calls the global virtual function visit for
each element *i (cf. Fig. 5). The global definition of the latter is empty since it is ex-
pected to be temporarily redefined by client functions such as sum before calling loop.
In the example of Fig. 5, visit<int>, i. e., the particular instance of the template func-
tion visit for T equal to int, is temporarily redefined to accumulate all values x in the
local variable s of its enclosing function sum. With this redefinition in effect, loop is
called with the int vector v, which will call visit for every element of the vector, i. e.,
actually the redefinition just provided.

// Callback function for loop.
template <typename T>
virtual void visit (const T& x) {}

// Loop through container c and call visit for each element.
template <typename C>
void loop (const C& c) {

typename C::iterator i = c.begin();
while (i != c.end()) visit(*i++);

}

// Return sum of elements contained in v.
int sum (const vector<int>& v) {

int s = 0;
virtual void visit<int> (const int& x) { s += x; }
loop(v);
return s;

}

Figure 5: Definition and application of an iteration function

3.4 Exception Handling with Resumption

The exception handling mechanisms provided by today’s mainstream programming lan-
guages allow programs to throw an exception at some point and to catch it at some other
point in a dynamically enclosing scope, causing all intermediate scopes to be terminated
abruptly. In particular, it is impossible to resume execution at the point where the excep-
tion has been thrown, even if its cause could have been removed.

To achieve such a behaviour, one must not throw an exception when encountering a
problem such as lack of dynamic memory, but rather call a handler function that tries to
fix the problem (e. g., by freeing some data structures which merely cache intermediate
results which can be recomputed on demand) and either returns normally (if it was suc-
cessful) or actually throws an exception (otherwise). This technique is used, for example,

in C++, where a handler function registered with set_new_handler is called when the
allocation function implementing the new operator has not been able to allocate suf-
ficient memory. If this handler function returns normally, new repeats its attempt to allo-
cate memory; otherwise the handler function is expected to throw a bad_alloc excep-
tion [St00].

Even though this is a viable way from a pragmatic point of view, it actually requires
the combination of two different mechanisms −− function calls and exception handling −−
to appropriately deal with exceptional situations, even though exception handling has
been explicitly introduced into programming languages to provide a single coherent
mechanism to deal with exceptions. To make do with a single mechanism, one either
needs an exception handling mechanism supporting resumption (cf. [Gr05]) −− or a func-
tion mechanism supporting abrupt termination. Non-local jumps in local virtual func-
tions exactly support the latter, and using this mechanism actually makes exceptions dis-
pensable, as will be explained in the sequel.

To declare a new kind of exception, such as out_of_memory, one does not introduce
this as a new type (e. g., as a subclass of Throwable in Java), but rather as a global vir-
tual function whose initial implementation simply aborts program execution, possibly af-
ter printing some appropriate error message.

To throw such an exception, one simply calls this function. Depending on the particu-
lar kind of exception, the function might take parameters whose values serve to describe
the exceptional situation in more detail, in the same way constructors of exception types
might have parameters. As long as the function has not been redefined, calling it leads to
program termination, in the same way as throwing an exception that is not caught any-
where leads to program termination.

To catch such an exception in some dynamically enclosing scope, one temporarily re-
defines the global virtual function by a local virtual function, whose body therefore cor-
responds to a catch block for the respective exception, while the code following the lo-
cal function in the same scope corresponds to the respective try block: Whenever the
function is called directly or indirectly from within this code, the local redefinition will
be called instead of the initial global definition, in the same way as throwing an excep-
tion from within a try block causes execution of an accompanying catch block.

This local function has basically three possibilities to deal with the exceptional situa-
tion: First, it might cure the problem and return normally, causing execution to be contin-
ued at the point where the function has been called, i. e., to resume execution at the point
where the exception has been “thrown.” Second, it might use a non-local jump statement
to abruptly terminate its own execution as well as all intermediate dynamic scopes up to
one of its statically enclosing scopes (cf. Fig. 64). The resulting control flow is very simi-
lar to that achieved with normal exception handling where the abrupt termination already
happens during the search for a matching catch block, i. e., before this block is execut-
ed, while here it is performed only after the “handler” has decided to do so. Neverthe-
less, the point of continuation after execution of the “handler” is in the same scope in
both cases.

4 do { } while (false) is an idiom describing a “loop” that is executed exactly once. It differs from
a simple block since (extern) break can be used to terminate it prematurely.

// "Declare" out_of_memory exception.
virtual void out_of_memory () {

cerr << "out of memory" << endl;
abort();

}

// Install out_of_memory as new_handler.
set_new_handler(out_of_memory);

void f () {
// "Try/catch statement".
do {

// "Catch" out_of_memory exception.
virtual void out_of_memory () {

// Try to free some dynamic data.
......

// If successful, "resume",
// otherwise terminate "try/catch statement".
if (......) return;
else extern break;

}

// Use operator new directly
// or call functions using it.
......

} while (false);

// Other code.
......

}

Figure 6: Example of exception handling with local virtual functions

The third possibility for the local function to deal with the exceptional situation is to
delegate the call to its previous implementation, i. e., to rethrow the exception. If no oth-
er redefinitions of the function are currently in effect, this will call the initial global defi-
nition, i. e., abort the program. Otherwise, however, the exception is propagated to the
next responsible “handler,” in the same way as a rethrown exception, and this handler has
the same three choices to deal with it.

In addition to the possibility of temporary redefining an exception function, it is also
possible to redefine it globally, i. e., to install a kind of global “catch block” for the ex-
ception.

4 Implementation

4.1 Global Virtual Functions

As already mentioned in Sec. 3.1, every definition of a global virtual function is trans-
formed to an ordinary C++ function (possessing some unique, system-generated name)
plus some auxiliary data structures and functions by means of a precompiler. The auxil-
iary data structures are actually global function pointer variables used to represent the
list of global branches and to enable each branch to call its previous branch via such a
variable. The auxiliary functions are on the one hand an empty branch zero representing
the previous branch of the first branch and on the other hand a dispatch function possess-
ing the same signature as the global virtual function itself and calling its last branch via
one of the function pointer variables. This is the function that is actually called when the
global virtual function is called from anywhere in the program. A more detailed descrip-
tion is given in [He03b] and [He05].

4.2 Local Virtual Functions

A local virtual function definition is basically transformed to a member function of a lo-
cal auxiliary class. This allows a completely “local” source code transformation, in con-
trast to the alternative possibility of moving the local function out of its enclosing func-
tion(s) and transforming it to an ordinary global function.

The only problem with this approach is the fact that member functions of local classes
must not use local variables of the enclosing function [St00]. The reason for this restric-
tion is the possibility that an instance of a local class might survive the execution of the
enclosing function (e. g., if it is allocated dynamically), and then calling a member func-
tion of this instance would lead to undefined behaviour if this function tries to access va-
riables of the no longer existing enclosing function.

To circumvent this problem, references to all local variables of the enclosing function
are provided as data members of the auxiliary class, which are initialized by a construc-
tor receiving the actual references as arguments (cf. Fig. 7). Using this trick, local varia-
bles of the enclosing function can be used in the local function without restrictions. On
the other hand, the problem mentioned above might reappear in principle. However,
since the only instance of the auxiliary class that will be created is a local one, it will dis-
appear as soon as the enclosing function (actually the enclosing block) terminates.

The constructor and destructor of the auxiliary class are responsible for pushing resp.
popping the local branch on resp. from the stack of local redefinitions of the function.
This stack is implemented as a linked list using the auxiliary class instances as elements.
A pointer to the topmost element of the stack is either provided in a global variable (if
multi-threading is not an issue) or in a thread-local variable. The dispatch function men-
tioned in Sec. 4.1 uses this variable to locate the topmost element of the stack (belonging
to the current thread) and call its member function operator() or −− if the stack is cur-
rently empty −− call the last global branch as described earlier.

// Source code:
void g () {

// Local variables of g.
int a; bool b;

// Local redefinition of some global virtual function f
// using a and b.
virtual void f () { a b }

// Other code of g.
......

}

// Transformed code:
void g () {

// Local variables of g.
int a; bool b;

// Auxiliary class.
class f__1234 {

// References to local variables of g.
int& a; bool& b;

// Constructor initializing these references
// and pushing instance on stack of local redefinitions.
f__1234 (int& a, bool& b) : a(a), b(b) { }

// Destructor popping instance from stack.
˜f__1234 () { }

// Member function replacing local function.
void operator() () { a b }

};

// Instance of auxiliary class receiving references
// to local variables of g as constructor arguments.
f__1234 f__inst__1234(a, b);

// Other code of g.
......

}

Figure 7: Implementation of local virtual functions

4.3 Non-Local Jump Statements

As already mentioned in Sec. 2.3, the effect of a non-local jump statement is equivalent
to throwing an exception that is caught at the appropriate place in the designated enclos-
ing function and executing the corresponding ordinary jump statement from that place.
This is exactly the way a non-local jump statement is implemented by the precompiler: It
is transformed to a statement throwing an exception which encodes the kind of statement

(return, break, or continue), the designated enclosing function (using unique num-
bers), and −− in the case of a return statement with an expression −− the value of this ex-
pression. Furthermore, every block containing local function definitions is replaced by a
try block with accompanying catch blocks which catch these kinds of exceptions and
execute the corresponding normal jump statement (cf. Fig. 8).

// Ordinary global function g.
bool g () {

// Loop statement in g.
while (......) {

try {
class f__1234 {

......

// Local redefinition of f.
int operator() () {

// Loop statement in local f.
while (......) {

// Terminate loop statement in local f.
if (......) break;

// Terminate loop statement in g.
if (......) throw Break__<5678>();

// Terminate local f with result 1.
if (......) return 1;

// Terminate g with result true.
if (......) throw Return__<5678, bool>(true);

}
}

};
f__1234 f__inst__1234;

// Code calling f directly or indirectly.
......

}
catch (Break__<5678>) { break; }
catch (Return__<5678, bool> r) { return r.value; }

}
}

Figure 8: Implementation of non-local jump statements (transformed code for Fig. 2)

5 Related Work

The most obvious related work to local virtual functions are dynamically scoped func-
tions as proposed by Costanza [Co03], and in fact, the idea to extend the already existing
concept of global virtual functions with local virtual functions has been influenced by

this work. Non-local jump statements, however, are an important extension of this ap-
proach, allowing local virtual functions to be used for exception handling where a han-
dler can choose to either terminate or resume execution at the point where the exception
has been “thrown” (cf. Sec. 3.4). As already pointed out there, employing local virtual
functions in that way actually makes a separate exception handling mechanism of a pro-
gramming language dispensable (at least on the language level).

Costanza’s implementation of dynamically scoped functions is based on Common
Lisp’s special variables [St90], i. e., dynamically scoped variables, which correspond
closely to the idea of semi-global variables mentioned in Sec. 3.2. In fact, the standard
print functions of Common Lisp make heavy use of such variables in the same manner as
described there to avoid cluttering their signatures with lots of parameters determining
the exact output format.

Dynamic variables proposed by Hanson and Proebsting [HP01] basically implement
the same concept in an imperative language such as C++, and the authors describe simi-
lar advantages with respect to parameter lists of functions. They also point out that there
is a close relationship of dynamic variables to exceptions, both on a conceptual level −−
dynamic variables are a data construct with dynamic scope, while exception handling is
a control construct with dynamic scope −− and in terms of implementation techniques −−
techniques developed for efficient implementations of exception handling can also be
used for efficient implementations of dynamic variables.

Implicit parameters described by Lewis et. al [Le00] basically pursue the same goal,
but employ a different strategy: Instead of permitting functions to access variables of
other dynamic scopes, i. e., to search for the most recent definition of an identifier in the
call stack, functions might have implicit parameters whose values are inferred from the
context and which are automatically passed on to nested function calls on demand.

Local virtual functions differ from true closures provided by many functional lan-
guages, since their “lifetime” is restricted by the “lifetime” of their statically enclosing
function. Therefore, it is sufficient to keep their “environment” on the procedure stack
instead of allocating (and garbage-collecting) it on the heap.

As Costanza points out, dynamically scoped functions can be seen “as the essence of
AOP” (aspect-oriented programming) −− or at least as one of two essential parts, with
quantification, e. g., by means of pointcut expressions, being the other one [FF00]. In
fact, dynamically scoped functions and likewise local virtual functions can be seen as
around advice associated with a call or execution join point (designating the global vir-
tual function being redefined) that is restricted by a cflow join point (designating the
function or block containing the local virtual function definition). However, in contrast to
full-fledged aspect-oriented programming languages such as AspectJ [Ki01] or As-
pectC++ [SGS02], which extend their base language Java resp. C++ with a large number
of additional language constructs, global and local virtual functions are a rather small ex-
tension of the fundamental procedure concept of imperative languages, which neverthe-
less results in a significant gain of expressiveness and flexibility.

In fact, global and local virtual functions constitute one major building block of so-
called advanced procedural programming languages, whose main goal is to provide the
expressiveness and flexibility of object-oriented and aspect-oriented languages which a
significantly smaller number of language constructs [He05].

References

[Co03] P. Costanza: “Dynamically Scoped Functions as the Essence of AOP.” ACM SIGPLAN
Notices 38 (8) August 2003, 29−−36.

[FF00] R. E. Filman, D. P. Friedman: “Aspect-Oriented Programming is Quantification and
Obliviousness.” In: Workshop on Advanced Separation of Concerns (OOPSLA 2000,
Minneapolis, MN, October 2000).

[GJS96] J. Gosling, B. Joy, G. Steele: The Java Language Specification. Addison-Wesley, Read-
ing, MA, 1996.

[Gr05] A. Gruler, C. Heinlein: “Exception Handling with Resumption: Design and Implementa-
tion in Java.” In: H. R. Arabnia (ed.): Proc. Int. Conf. on Pro gramming Languages and
Compilers (PLC’05) (Las Veg as, NV, June 2005), 165−−171.

[He03a] C. Heinlein: “Safely Extending Procedure Types to Allow Nested Procedures as Values.”
In: L. Böszörményi, P. Schojer (eds.): Modular Programming Languages (Joint Modular
Languages Conference, JMLC 2003; Klagenfurt, Austria, August 2003; Proceedings).
Lecture Notes in Computer Science 2789, Springer-Verlag, Berlin, 2003, 144−−149.

[He03b] C. Heinlein: “Dynamic Class Methods in Java.” In: Net.ObjectDays 2003. Tagungsband
(Erfurt, Germany, September 2003). tranSIT GmbH, Ilmenau, 2003, ISBN 3-9808628-2-
8, 215−−229. (An extended version is available as a Technical Report at
http://www.informatik.uni−ulm.de/pw/berichte/)

[He05] C. Heinlein: “Virtual Namespace Functions: An Alternative to Virtual Member Func-
tions in C++ and Advice in AspectC++.” In: Proc. 2005 ACM Symposium on Applied
Computing (SAC) (Santa Fe, New Mexico, March 2005), 1274−−1281.

[HP01] D. R. Hanson, T. A. Proebsting: “Dynamic Variables.” In: Proc. 2001 ACM SIGPLAN
Conf. on Pro gramming Language Design and Implementation (PLDI) (Snowbird, UT,
June 2001). ACM, 2001, 264−−273.

[Ki01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold: “An Over-
view of AspectJ.” In: J. Lindskov Knudsen (ed.): ECOOP 2001 −− Object-Oriented Pro-
gramming (15th European Conference; Budapest, Hungary, June 2001; Proceedings).
Lecture Notes in Computer Science 2072, Springer-Verlag, Berlin, 2001, 327−−353.

[Le00] J. R. Lewis, M. B. Shields, E. Meijer, J. Launchbury: “Implicit Parameters: Dynamic
Scoping with Static Types.” In: Proc. 27th ACM Symp. on Principles of Programming
Languages (Boston, MA, January 2000). ACM, 2000, 108−−118.

[SGS02] O. Spinczyk, A. Gal, W. Schröder-Preikschat: “AspectC++: An Aspect-Oriented Exten-
sion to the C++ Programming Language.” In: J. Noble, J. Potter (eds.): Proc. 40th Int.
Conf. on Technology of Object-Oriented Languages and Systems (TOOLS Pacific) (Syd-
ney, Australia, February 2002), 53−−60.

[St00] B. Stroustrup: The C++ Programming Language (Special Edition). Addison-Wesley,
Reading, MA, 2000.

[St90] G. L. Steele Jr.: Common Lisp: The Language (Second Edition). Digital Press, Bedford,
MA, 1990.

[Wi88] N. Wirth: “The Programming Language Oberon.” Software—Practice and Experience
18 (7) July 1988, 671−−690.

