
MOSTf l ex iP L
An Extremely Flexible Programming Language

Christian Heinlein

Hochschule Aalen (University of Applied Sciences)

Aalen, Baden-Württemberg, Germany

christian.heinlein@hs-aalen.de

September 2023

Abstract. MOSTflexiPL is a general-purpose programming language, whose

syntax can be freely extended and customized by every programmer. Based on a

small set of predefined operators, it is possible to define new operators with ar-

bitrary syntax, which do not only cover prefix, infix, and postfix operators, but

also control structures, type constructors, and declaration forms. The paper

gives an overview of major concepts of MOSTflexiPL in a tutorial-like manner

by giving numerous examples from everyday programming.

1 Introduction

MOSTflexiPL, which is an acronym for modular, statically typed, flexibly extensible

programming language, is a general-purpose programming language, whose syntax

can be freely extended and customized by every programmer. The logo used in the pa-

per title shall express the extreme flexibility provided by the language allowing even

fancy constructions unimaginable with conventional languages. (Therefore, it might

be advisable to forget almost all familiar and seemingly necessary limitations of other

languages to be able to fully recognize MOSTflexiPL’s capabilities.)

A basic principle enabling that flexibility is: Everything is an expression, i. e., the ap-

plication of an operator to subexpressions, where operators might possess any number

of names and operands in an arbitrary order. Apart from well-known prefix, infix, and

postfix operators, this also includes “circumfix” operators such as (•) (an operand

depicted by the bullet sign enclosed in parentheses), control structures such as if•
then•else•end, declaration forms such as •:• (a name and a type separated by a

colon), and so on. Another basic principle is, that the language provides only a small

set of predefined operators covering arithmetic and logic operations as well as basic

control structures, which can be used to define arbitrary new operators.

As the name indicates, the language is statically typed −− which imposes numerous

challenges with respect to the already mentioned flexibility −−, and it is currently im-

plemented by a compiler and a run-time system written in C++.

The primary goal of this paper is to give a broad overview of MOSTflexiPL’s major

concepts in a tutorial-like manner by showing numerous examples taken from every-
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day programming. The examples also demonstrate, that writing syntactic extensions

in MOSTflexiPL is just as easy as writing normal code, which is a significant differ-

ence and advantage over other approaches to syntactic extensibility.

2 Simple Operator Declarations

To giv e a first example, the following simple declarations define operators computing

the square and the absolute value, respectively, of an integer value x, which can after-

wards be applied using well-known mathematical syntax, e. g., 52
or |2−7|2

:

(x:int) "2" -> (int = x * x);
"|" (x:int) "|" -> (int = if x > 0 then x else -x end)

An operator declaration generally consists of a signature, an arrow and a result decla-

ration, where the signature is a sequence of names and parameter declarations, while

the result declaration consists of a type (the result type of the operator), an equality

sign, and the implementation of the operator, enclosed in parentheses. A name is ei-

ther a sequence of letters and digits starting with a letter (denoting exactly this se-

quence of characters) or a sequence of arbitrary characters enclosed in quotation

marks (denoting this sequence of characters without the quotation marks). A parame-

ter declaration consists of a name, a colon, and a type, enclosed in parentheses. Final-

ly, the implementation and the types mentioned above are −− according to the basic

principle mentioned in Sec. 1 −− expressions. (At the moment, types are atomic ex-

pressions such as int or bool, but see Sec. 4 and Sec. 7 for more complex type ex-

pressions.)

When an operator application such as |2−7|2
is evaluated at run time, the parameters

of the operator are initialized from left to right by recursively evaluating the corre-

sponding operands and then the value of the expression is determined by evaluating

the implementation of the operator.

In the examples above, the implementation of the square operator uses the predefined

multiplication operator •*•, while the implementation of the abs operator uses the

predefined change sign operator −• as well as the conditional operator if•then•
else•end that returns, according to the truth value of its first operand, either the val-

ue of its second or its third operand.

The semicolon used to separate the two operator declarations is a simple predefined

infix operator that evaluates its left and right operand and returns the value of the lat-

ter and therefore is typically used to denote sequential execution of subexpressions.

But −− again according to the basic principle mentioned in Sec. 1 −− since declarations

are expressions, too, the semicolon is also used to separate multiple declarations.

(Sec. 8 explains the precise meaning of the result value of an operator declaration.) In

contrast to many other programming languages, however, semicolon must not be used

at the end of a sequence of subexpressions, because it is an infix operator.

To giv e another example, the following declaration defines an operator that recur-

sively computes the factorial of an integer value n, which can also be applied using

56



well-known mathematical syntax, e. g., 5! or 52!:

(n:int) "!" -> (int = if n <= 1 then 1 else (n-1)! * n end)

The particular challenge for the compiler with a declaration like this is to already rec-

ognize and accept the new syntax defined by the declaration inside of its own imple-

mentation to allow recursive applications of the operator.

MOSTflexiPL does not provide a predefined syntax for function declarations and ap-

plications, because any desired syntax is actually covered by the general operator dec-

laration syntax mentioned above. For example, the style used by many procedural lan-

guages with function applications of the form max(2, 3):

max "(" (x:int) "," (y:int) ")"
-> (int = if x > y then x else y end)

Or the syntax of functional languages such as Haskell with function applications of

the form max 2 3:

max (x:int) (y:int) -> (int = if x > y then x else y end)

Or even a more natural-language-like flavour with function applications of the form

max of 2 and 3:

max of (x:int) and (y:int)
-> (int = if x > y then x else y end)

3 Exclude Declarations

The predefined operators of MOSTflexiPL obey common rules for precedence and as-

sociativity, e. g., multiplication and division bind stronger than addition and subtrac-

tion, and all of them are left-associative. In contrast, user-defined operators have no

predefined precedence or associativity, which frequently leads to ambiguous expres-

sions. For example, the expression 2 + 32
might not only have the intended meaning

2 + (32), but could also be interpreted by the compiler as (2 + 3)2
(where the paren-

theses shall only indicate the different groupings).

Exclude declarations can be used to resolve such ambiguities by specifying interpreta-

tions of expressions which are not intended, i. e., excluded, for example:

excl (2 + 3)2 end

Here, 2 and 3 are arbitrary placeholders for integer operands. The effect of this decla-

ration is that applications of the operator •+• (the operator at the top of the parenthe-

sized subexpression) are excluded as operands of the operator •2
. Therefore, the ex-

pression 2 + 32
will now be unambiguously interpreted as the addition of 2 and the

square of 3, because the alternative interpretation as the square of the addition of 2
and 3 is now forbidden.

Because outside of exclude declarations, the predefined parentheses (•) are just a

normal operator (that simply returns the value of its operand), they can still be used
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for explicit grouping: In the expression (2 + 3)2
with explicit parentheses around the

addition, the operand of the operator •2
is not an application of the operator •+•, but

rather an application of the operator (•) (whose operand is an application of the oper-

ator •+•), which is not forbidden.

In general, the expression between excl and end can contain any number of paren-

thesized subexpressions, each of which is interpreted as described above. Therefore,

the effect of the following exclude declaration is, that the square operator binds

stronger than all basic arithmetic operators:

excl (1 + 2)2; (1 - 2)2; (1 * 2)2; (1 / 2)2 end

To giv e another example, the following exclude declarations encode exactly the rules

for precedence and associativity of the basic arithmetic operators that have been men-

tioned at the beginning of this section:

excl (1+2)*(3+4); (1-2)*(3-4); (1+2)/(3+4); (1-2)/(3-4) end;
excl 1*(2*3); 1*(2/3); 1/(2*3); 1/(2/3) end;
excl 1+(2+3); 1+(2-3); 1-(2+3); 1-(2-3) end

4 Constants and Variables

A declaration of the form name : type = init declares a constant with the given

name and type whose value is obtained by evaluating the initializer expression init,

e. g., N : int = 52
. If the type is omitted, e. g., N := 52

, it is automatically deduced

from the type of the initializer. If the initializer is omitted, the constant receives a

unique new value that is different from every other value of the type. While this is of

limited usefulness for numeric types such as int, it is crucial for variable types de-

scribed below and for user-defined types described later in Sec. 6.

For any type T, the type T? denotes memory cells containing values of type T. There-

fore, a declaration such as x : T? defines x as a constant referring to a unique new

memory cell that contains a value of type T, i. e., x actually denotes variable with con-

tent type T. The current value contained in such a variable can be queried with the

prefix question mark operator ?•, and it can be changed with the assignment

operator •=!•. The initial value of a variable is nil, which is a predefined value for

any type that is different from every other value of the type. Because a variable with

content type T is itself a value of type T?, it might itself be stored in a variable of

type T??. If the content of such a variable is queried prior to any assignment to the va-

riable, the returned value is the nil value of type T?. If the content of this nil variable

is queried in turn, it will be the nil value of type T, and assigning any value to such a

nil variable has no effect. (This behaviour is roughly comparable to reading and writ-

ing the Unix special file /dev/null.)

By using variables and the predefined loop operator while•do•end, the factorial op-

erator mentioned in Sec. 2 can also be implemented in a more procedural style:
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(n:int) "!" -> (int =
f : int?; f =! 1;
i : int?; i =! 2;
while ?i <= n do

f =! ?f * ?i;
i =! ?i + 1

end;
?f

)

In the implementation of the operator, the variables f and i are declared and assigned

their initial values as described above, where i is used as a loop counter running

from 2 to n, while f accumulates the factorial value that is finally returned.

5 Optional, Alternative, and Repeatable Syntax Parts

To provide even more syntactic flexibility, the signature of an operator declaration

might also contain optional, alternative, and repeatable parts using well-known EBNF

syntax.

For example, the following declaration defines a variadic maximum operator that can

be applied to any number of operands, e. g., max of 1, max of 1 and 2, max of 1
and 2 and 3, and so on:

max of (x:int) { and (y:int) } -> (int =
m : int?; m =! x;
{ if y > ?m then m =! y end };
?m

)

According to EBNF, the curly brackets in the signature indicate that an application of

this operator might contain the word and followed by an operand corresponding to

the parameter y any number of times (zero or more). To access the different values of

this parameter in the implementation of the operator, a corresponding curly bracket

operator {•} is provided there, whose operand is repeatedly evaluated for every value

of y. For the particular application max of 1 and 2 and 3 this means, that the varia-

ble m declared in the implementation is initialized with the value of x (i. e., 1), and

then the if expression inside the curly brackets is evaluated in turn for y equal to 2
and to 3, changing the value of the variable m to 2 and to 3, respectively. Finally, the

resulting value of m is returned.

To giv e another example, the following operator performs arbitrary calculations con-

sisting of additions and subtractions, e. g., calc minus 1 plus 2 or calc 1 minus 2
plus 3:

calc [minus] (x:int) { (plus|minus) (y:int) } -> (int =
res : int?;
res =! [-x | x];
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{ res =! (?res + y | ?res - y) };
?res

)

In addition to the curly brackets denoting a repeatable part, the signature of this opera-

tor also contains square brackets denoting an optional part as well as round brackets

containing two or more alternative parts separated by vertical bars. To find out in the

implementation of the operator, whether the optional word minus after the word

calc is present or not in a particular application of the operator, a corresponding

square bracket operator [•|•] is provided, whose first or second operand, respec-

tively, is evaluated accordingly. Similarly, a round bracket operator (•|•) with two

operands corresponding to the round brackets with two alternatives in the signature is

provided, whose first or second operand is evaluated according to whether the first or

second alternative has been chosen in a particular application of the operator or −− be-

cause in this example the round brackets are nested inside the curly brackets −− in the

respective pass through the curly brackets. The result value of a square or round

bracket operator is the value of the operand that has been evaluated, while the result

value of a curly bracket operator is the number of passes through these brackets. Tak-

en together, these bracket operators allow the implementation of the operator to exact-

ly determine the structure a particular operator application and to process the values

of its operands in a rather concise manner.

Generally speaking, all three kinds of brackets can have any number of alternatives,

except that round brackets must contain at least two, because round brackets with just

one alternative are useless. Therefore, the corresponding bracket operators provided in

the implementation of the operator have a corresponding number of operands separat-

ed by vertical bars, where the i-th operand is evaluated if the i-th alternative has been

chosen in a particular operator application or pass through curly brackets. As an ex-

ception, an operator corresponding to square brackets has an additional optional

operand, that is evaluated (if it is present) if none of the alternatives has been chosen.

Therefore, the calc operator could also be defined as follows:

calc [minus] (x:int) { plus (y:int) | minus (z:int) } -> (int =
res : int?;
res =! [-x | x];
{ res =! ?res + y | res =! ?res - z };
?res

)

The different kinds of brackets can be used any number of times in an operator signa-

ture, and they can be arbitrarily nested to describe rather complex syntactic constructs,

for example:

dnf [na: not] (a:bool) { and [nb: not] (b:bool) }

{ or [nc: not] (c:bool) { and [nd: not] (d:bool) } } end
-> (bool =

res : bool?;
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res =! [na: ˜a | a];
{ res =! ?res & [nb: ˜b | b] };
{

tmp : bool?;
tmp =! [nc: ˜c | c];
{ tmp =! ?tmp & [nd: ˜d | d] };
res =! ?res | ?tmp

};
?res

)

This operator can be used to express arbitrary logic expressions in disjunctive normal

form (DNF), e. g., dnf x or not u and v and w or y and not z end, if u, . . ., z de-

note values of type bool. The predefined operators of MOSTflexiPL for logic opera-

tions used in the implementation of the dnf operator are ˜• for negation, •&• for con-

junction, and •|• for disjunction. To disambiguate the multiple square brackets in the

signature and their corresponding bracket operators in the implementation, they are la-

beled with unique names and a colon after the opening bracket. While the curly brack-

ets could be disambiguated in the same way, this is actually not necessary, because pa-

rameters defined inside of particular curly brackets are only visible in the operands of

the corresponding bracket operator. Therefore, the bracket operator used first in the

implementation must correspond to the first curly brackets in the signature, because

parameter b is only visible in the operator corresponding to these brackets. For the

same reason, the (outer) bracket operator used next in the implementation must corre-

spond to the second (outer) brackets in the signature (due to the visibility of

parameter c), while the bracket operator used inside of the former must correspond to

the inner brackets in the signature (due to the visibility of parameter d).

6 Static Operators and User-Defined Data Structures

As already mentioned in Sec. 2, a constant declaration name : type defines a con-

stant with the given name and type and a unique new value. Constants whose type is

the predefined meta-type type denote unique new types, e. g.:

Color : type

Afterwards, any number of unique values or “objects” of such a type can also be de-

fined as constants, e. g.:

red : Color;
blue : Color;
green : Color

As also mentioned in Sec. 2, constants of a variable type T? actually denote unique

variables with content type T.
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Additionaly, if the implementation of an operator (including the equality sign) is omit-

ted, a unique new value of the result type is returned whenever the implementation

would be evaluated.

If the arrow −> in an operator declaration is replaced by a double arrow =>, the de-

clared operator is a so-called static operator. In contrast to a normal operator defined

with a single arrow (that is also called a dynamic operator), a static operator has a

runtime memory to store the parameter and result values of all applications of the op-

erator performed so far. If the parameter values of a particular application are equal to

the corresponding values of an earlier application, the implementation of the operator

is not evaluated again, but the result value stored from the earlier application is re-

turned instead. Therefore, a static operator guarantees that applications to the same

parameter values always return the same value.

While this could be used to automatically optimize operators with runtime-intensive

implementations by means of memoization, this is in fact neither the primary goal nor

the typical use of static operators. Instead, they can be used as follows to flexibly de-

fine data structures:

Point : type;
(p:Point) "@" x => (int?);
(p:Point) "@" y => (int?);

p1 : Point; p1@x =! 1; p1@y =! 2;
p2 : Point; p2@x =! 3; p2@y =! 4;

dx := ?p1@x - ?p2@x;
dy := ?p1@y - ?p2@y

According to the semantics of static operators and omitted operator implementations

described above, the operator •@x (and likewise the operator •@y) guarantees, that ap-

plications to the same point object always return the same int variable, while appli-

cations to different point objects return different variables (that are also different from

all other existing variables). Therefore, the variables returned by p1@x and p1@y can

be used to store the x and y coordinates of p1, while the variables returned by p2@x
and p2@y can be used to store the coordinates of p2. Therefore, the constants dx and

dy defined at the end of the example denote the difference of the x and y coordinates,

respectively, of the points p1 and p2 (i. e., both have the value −2).

Because it is always possible to add further operators like •@x and •@y later on, i. e.,

to modularly extend a type such as Point with new “attributes,” these types are called

open types [5]. Furthermore, it is possible that different objects of a type possess val-

ues for different subsets of attributes. According to the semantics of variables de-

scribed in Sec. 4, querying the value of a missing attribute of an object simply returns

nil.
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7 Generic Operators

If an optional parameter appears in the type of another parameter of the same opera-

tor, its value can be automatically deduced from the type of the operand correspond-

ing to the other parameter, and therefore, the former parameter is called a deducible

parameter. This can be used to define generic operators similar to C++ templates and

Java generics, for example:

[(T:type)] (x:T?) "<->" (y:T?) -> (T? =
z := ?x; x =! ?y; y =! z; y

);

excl u : int?; u <-> (u <-> u) end;

v1 : int?; v1 =! 1;
v2 : int?; v2 =! 2;
v1 <-> v2

Because v1 and v2 both have type int?, v1 <−> v2 is a correct application of the

previously defined swap operator, where the parameters x and y are initialized with

the explicit operands v1 and v2, respectively, while the optional parameter T is im-

plicitly initialized with the type int causing the type int? of the operands v1 and v2
to match the type T? of the corresponding parameters x and y. The implementation of

this operator swaps the values contained in the variables x and y and returns the varia-

ble y. (The latter enables concatenated applications of the operator to a sequence of

variables, e. g., v1 <−> v2 <−> v3, actually performing a leftward rotation of their

values. To disambiguate expressions like that, the exclude declaration is necessary

which makes the operator left-associative.)

Generic operators can also be used to generalize the idea of open types and attributes

already introduced in Sec. 6:

(U:type) "-->" (V:type) => (type);
[(U:type) (V:type)] (u:U) "@" (a:U-->V) => (V?);

Point : type;
x : Point --> int;
y : Point --> int;

p1 : Point; p1@x =! 1; p1@y =! 2;
p2 : Point; p2@x =! 3; p2@y =! 4

For every pair of types U and V, U−−>V is a unique type intended to represent at-

tributes for type U with target type V. Therefore, the constants x and y represent at-

tributes for type Point with target type int. Furthermore, for every combination of

an object u of some type U and an attribute a for type U with some target type V, u@a
is a unique variable with content type V that can be used to store the value of

attribute a for object u. Therefore, expressions such as p1@x and p2@y have exactly
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the same meaning as in Sec. 6, but the definition of the attributes x and y is much

more convenient now if the operators •−−>• and •@• are provided by a library.

To make things even more convenient, another operator •.• can be defined to simpli-

fy the querying of attribute values by allowing to write, e. g., p1.x instead of ?p1@x:

[(U:type) (V:type)] (u:U) "." (a:U-->V) -> (V = ?u@a)

Furthermore, it is possible to define a more advanced generic operator to directly con-

struct objects of an open type with a set of initial attribute values:

(U:type) "(" [(V1:type)] (a1:U-->V1) "=" (v1:V1)
{ "," [(V2:type)] (a2:U-->V2) "=" (v2:V2) } ")" -> (U =

u : U;
u@a1 =! v1;
{ u@a2 =! v2 };
u

);

p1 := Point(x = 1, y = 2);
p2 := Point(x = 3, y = 4)

As a final improvement, the operator •@• can be redefined as follows to make it re-

turn nil instead of a unique new variable if either the object u or the attribute a is nil

(note that a constant declaration returns the value of the constant and an if expression

without an else part returns nil if the condition is not satisfied; the predefined opera-

tor •=/• tests for inequality):

[(U:type) (V:type)] (u:U) "@" (a:U-->V) => (V? =
if u =/ nil & a =/ nil then

v : V?
end

)

The effect of this modification is that querying an attribute value of a nil object or the

value of a nil attribute of any object always returns nil (because querying a nil variable

returns nil) and that modifying such attributes has no effect (because modifying a nil

variable has no effect). Without this modification, it would be possible to accidentally

assign a value to an attribute of a nil object, that would afterwards be returned by

querying this attribute of the nil object, for example:

Line : type;
beg : Line --> Point;
end : Line --> Point;

ln := Line(beg = Point(x = 1, y = 2));
ln.end@x =! 4;
ln.end.x

Because the Line object ln does not have a value for the attribute end, ln.end re-

turns a nil point, whose attribute x is then (formally) assigned the value 4. With the

64



original definition of the operator •@• given at the beginning of this section,

ln.end@x would return a “real” variable that would store the assigned value 4.

Therefore, ln.end.x would return this value, which is illogical because the line ln
does not have a defined endpoint at all. With the modified definition of the operator

•@• given above, ln.end@x returns a nil variable causing the assignment of the

value 4 to have no effect, and therefore, ln.end.x also returns nil which is more log-

ical.

The above operators can also be used to define generic open types such as lists using a

Haskell-like syntax [|T|] to denote lists with element type T:

"[|" (T:type) "|]" => (type);
[(T:type)] head => ([|T|] --> T);
[(T:type)] tail => ([|T|] --> [|T|])

Note that the generic attributes head and tail are not defined as constants, because

constants cannot have any parameters and therefore cannot be generic, but rather as

static operators that return different values for different types T to make sure that list

types with different element types have logically different attributes.

Furthermore, head and tail are remarkable because the value of their type parame-

ter T cannot be deduced from their bare application (which is simply head or tail),

but only from the context of such an application, e. g.:

ls1 : [|int|]; ls1@head =! 1;
ls2 : [|bool|]; ls2@head =! true

Because (i) the type of ls1 is [|int|], (ii) the operand types of the operator •@•
must be U and U−−>V for suitable types U and V, and (iii) the type of head must be

[|T|]−−>T for some suitable type T, the type of head in the expression ls1@head is

uniquely deduced by the compiler as [|int|]−−>int by solving this “constraint

puzzle.” Likewise, the type of head in the expression ls2@head will be

[|bool|]−−>bool.

Using the above definitions, the “cons” operator for constructing a list from a head

element h and a tail list t can be defined as follows, again with a syntax •:• known

from Haskell:

[(T:type)] (h:T) ":" [(t:[|T|])] -> ([|T|] =
[|T|](head = h, tail = t)

);

excl (ls := 1) : end;

ls1 := 1 : 2 : 3 :;
ls2 := true : false :

As a convenient extension, the tail list can be omitted, because the parameter t is op-

tional and therefore is automatically nil if the corresponding operand is missing in an

application of the operator.
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Note that it is not necessary to explicitly make the operator •:• right-associative by

means of an exclude declaration, because an expression such as 1:2:3: can only be

interpreted as 1:(2:(3:)), because any other syntactically possible interpretation

(e. g., ((1:2):3):) would not be type-correct. And in fact, the MOSTflexiPL com-

piler −− in contrast to the compilers of many other programming languages −− does not

artificially separate the semantic analysis (i. e., type checking) from the syntactic anal-

ysis of the source code, but rather performs them together in close cooperation in or-

der to rule out expressions which are not type-correct as early as possible.

On the other hand, the exclude declaration contained in the example is necessary to

exclude an interpretation such as (ls1:=1):2:3:, which would in fact be type-

correct.

8 Implicit Parameters

Another useful example of generic operators would be a generic maximum operator

that can be applied to operands of any type T:

[(T:type)] max of (x:T) and (y:T) −> (T =
if x > y then x else y end

);

max of 1 and 2;
max of p1 and p2

While the application of this operator to the int values 1 and 2 appears reasonable,

its application to the points p1 and p2 does not make sense, because there is no opera-

tor •>• to compare points. And in fact, the compiler would already reject the above

declaration of the maximum operator and not only its application to points, because

there is no operator •>• that can be applied to the operands x and y of an arbitrary

type T whose precise value is not known there.

To make the compiler accept the operator declaration, it is necessary to express that

the operator might only be applied to operands of a type T, if there is an operator •>•
which accepts two operands of that type T and which returns a value of type bool.

This can be expressed with an implicit parameter:

[(T:type)] max of (x:T) and (y:T) [(+ (T) ">" (T) −> (bool))]
−> (T = if x > y then x else y end)

This requires explanations of some details which have not been mentioned yet:

• The name of a parameter including the subsequent colon can be omitted if it is not

needed.

Therefore, (T) ">" (T) −> (bool) is a correct operator declaration describing ex-

actly the kind of operator that is required by the maximum operator.

• Furthermore, an operator declaration actually constitutes a type, i. e., the type of the

declared operator, which includes the types of its parameters and its result as well as
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its syntax.

Therefore, ((T) ">" (T) −> (bool)) is a correct declaration of an anonymous

parameter whose type is the operator type (T) ">" (T) −> (bool).

• Prefixing this parameter type with a plus sign marks the parameter as an implicit

parameter of the maximum operator, which means that it is implicitly bound to an

operator of the same type that is visible at the point where the maximum operator is

applied. (Alternatively, it would be possible to pass an explicit operand of that type,

cf. Sec. 9.)

Therefore, applications of the parameter in the implementation of the maximum op-

erator (i. e., x > y) will actually be forwarded to the operator that has been passed

(either implicitly or explicitly).

For an application such as max of 1 and 2 with operands of type int that means, that

an operator with type (int) ">" (int) −> (bool), i. e., the predefined •>• opera-

tor for integer values, is implicitly passed to the maximum operator and thus used in

its implementation to compare the operands.

An application such as max of p1 and p2 with operands of type Point, howev er, is

rejected by the compiler, because there is no operator with type (Point) ">"
(Point) −> (bool) that could be passed implicitly. This could be remedied, howev-

er, by defining such an operator before applications of the maximum operator to

points:

(p1:Point) ">" (p2:Point) -> (bool = p1.x > p2.x)

Here, p1 is considered greater than p2 if the x coordinate of p1 is greater than that

of p2.

In fact, the operator that is implicitly passed for an implicit parameter is not required

to have exactly the same type as the parameter. It is rather sufficient, that the parame-

ter can be replaced by the operator according to the following definition: An operator

or parameter can be replaced by another operator or parameter, if every correct appli-

cation of the former is also a correct application of the latter with the same type.

For example, there is actually no predefined operator •>•, but rather a much more

general comparison operator that also supports comparison chains of multiple

operands such as a > b  = c  >= d with well-known semantics from mathematics. (In

contrast to mathematical practice, however, it is even allowed to form “inconsistent”

chains such as a > b <= c.) But because this operator can replace the implicit parame-

ter according to the definition above, it can and will in fact be passed implicitly to ap-

plications of the maximum operator to integer operands.

Another implication of this replacement rule is, that an operator that has implicit pa-

rameters itself can be implicitly passed to an implicit parameter, if there are in turn

matching operators for its own implicit parameters, and so on. For example:

[(T:type)] (x:T) "2" [((T) "*" (T) -> (T))] -> (T = x * x);
[(T:type)] (x:T) "4" [((T) "2" -> (T))] -> (T = x22)
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An application of the bisquare operator •4
to an integer value such as 54

requires a

square operator •2
for integers, which in turn requires a multiplication operator •*•

for integers, which is available as a predefined operator. Therefore, the expression 54

is correct.

On the other hand, an application of the bisquare operator to a point would require

a square operator for points, which would be available if there would be a multiplica-

tion operator for points, which is not the case, however. Therefore, an expression such

as p14
would be rejected by the compiler. Again, this could be remedied in principle

by defining such a multiplication operator.

9 Higher-Order Operators

Operators with implicit parameters as described in the previous section are actually

higher-oder operators, i. e., operators having parameters that are itself operators. This

is not restricted to implicit parameters, however, but operators can also be passed ex-

plicitly to other operators.

To giv e a typical example from functional programming:

[(X:type) (Y:type)]
map (f: f (X) -> (Y)) (ls: [|X|]) -> ([|Y|] =

if ls =/ nil then
(f ls.head) : (map f (ls.tail))

end
);

sq: (x:int) "2" −> (int = x * x);

sq: f (x:int) -> (int = x * x);
ls := (1 : 2 : 3 :);
map sq ls

According to the explanations given in Sec. 8, (f: f (X) −> (Y)) is the declaration

of a parameter with name f whose type is the operator type f (X) −> (Y), i. e., f is

used both as the name of the entire parameter and as the first name of the operator

contained in its type. Therefore, f ls.head is an application of this operator to

ls.head, while the f in map f ls.tail is used to pass this operator to the recursive

invocation of map.

According to the same principle, sq is a constant whose type is the operator type

given after the colon of the constant declaration and whose value is the operator con-

tained in that type. That is, in fact, an exception to the rule given in Sec. 4, which

must now be restated as follows: If the initializer in a constant declaration is omitted,

the value of the constant is either the operator contained in its type −− if this type is an

operator type −− or otherwise a unique new value as stated before. Therefore, sq can

actually be used to refer to the square operator and to pass it to the map operator.
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When an operator is passed explicitly, the requirement given in Sec. 8, that the opera-

tor must be able to replace the corresponding parameter, is relaxed in order to allow

operators whose syntax is different from the syntax of the parameter as in the above

example. (The operator’s syntax is •2
, while the parameter’s syntax is f•.) Instead,

only the parameter and result types of the operator and the parameter must match,

i. e., their names are completely ignored because they are not important. (The precise

rules, which are currently developed in detail, are more complex, because if an opera-

tor has optional, alternative, or repeatable parts, at least some of its names might be

important to disambiguate applications of this operator.)

Finally, it is also possible to return operators from other operators, for example:

add (y:int) -> (f (int) -> (int) =
f: f (x:int) -> (int = x + y)

);

map (add 5) ls

Because the result type of the operator add• is an operator type f (int) −> (int),

its implementation must return an operator of that type. And because the type of the

constant f is also an operator type −− in fact, exactly the same operator type −−, the val-

ue of this constant is, according to the restated rule above, the operator contained in

that type. Finally, because a constant declaration returns the value of the constant, the

implementation of the operator add• returns exactly this operator, which can then be

passed, e. g., to an application of the map operator. Please note, that it is in fact neces-

sary to declare that dummy constant (with an arbitrary name), because the operator

declaration itself does not return the declared operator, but rather its type (cf. Sec. 8).

10 Outlook

The language MOSTflexiPL and its compiler are still under active dev elopment, and

several useful features that have already been developed and prototypically imple-

mented in older versions of the compiler, hav e not been integrated into the current

compiler, including:

• “Call by expression” parameters, which are required to define control structures

such as branches and loops, whose operands shall be evaluated conditionally or re-

peatedly.

• Import and export declarations, which are required to define user-defined scoping

rules and locally confined syntax extensions.

• Virtual operators, which are required to define type aliases to abbreviate or abstract

from complex types and to define declaration operators, i. e., to be able to extend

ev en the syntax that is used to define new syntax.

• Dynamic redefinitions of operators [4], which allow amongst other things strictly

modular extensions of existing code and thus support unanticipated software evolu-

tion.
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• Basic operators for parallel execution and synchronization, which can be used to de-

fine more convenient and advanced constructs for parallel programming.

• User-defined literals, e. g., for types representing date and time values.

• User-defined whitespace and comments to allow any desired syntax for both block

and line comments.

• More descriptive compiler messages in case of errors and ambiguities.

• Meta-operators, which are required to pass the values of a repeatable parameter to

another operator accepting repeatable parameters.

This is in fact a completely new idea that is still under development and has not

been implemented in any of the compiler versions yet.

A feature that is already implemented in the current version of compiler, but has not

been described in this paper, is type deduction: Basically, it is possible to omit almost

all types from declarations as long as they can be deduced by the compiler, i. e., the

types of constants (this has in fact been mentioned in Sec. 4), parameters, and results

of operators.

11 Related Work

During the history of programming language development, the idea of an extensible

programming language has appeared every now and then.

One of oldest and most well-known examples is Lisp [9] with its different dialects and

flavors. Similar to MOSTflexiPL, Lisp does neither distinguish between operators and

functions nor between predefined and user-defined operators/functions. By defining

new functions −− or macros, whose syntactic appearance is identical to that of

functions −− a programmer is actually extending the language all the time. Another

parallel to MOSTflexiPL is the fact that language extensions are defined in the lan-

guage itself, and that a very small language core is sufficient for that purpose. Howev-

er, there are also essential differences: First of all, Lisp does not possess a static type

system. Furthermore, Lisp expressions must always be parenthesized, which signifi-

cantly restricts the possibilities for defining new syntax. Finally, MOSTflexiPL does

not have a “procedural” macro engine, i. e., no user code will be executed at compile

time in order to perform syntactic transformations. In summary, MOSTflexiPL has

considerable advantages over Lisp (complete syntactic freedom and static type safe-

ty), while the deliberately omitted procedural macro facility has not been perceived as

a major limitation yet.

Dylan [3] is a more modern language that has been strongly influenced by Lisp’s

ideas. It also supports syntactic extensibility in the language itself (actually in a

rewrite macro system which is an integral part of the language). Even though the pro-

grammer has more freedom than with Lisp’s simple s-expressions, there are also strict

syntactic limitations which cannot be exceeded. In contrast, the operator concept of
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MOSTflexiPL offers virtually unlimited syntactic freedom. Apart from that, Dylan

does not have a static type system either.

Many different languages, e. g., Haskell [7], Prolog [2], and Scala [8], allow the user

to extend at least the syntax of expressions by defining new operator symbols. Since

functional languages, just as MOSTflexiPL, do not distinguish between expressions

and statements, the syntax of statements (e. g., control structures) becomes also exten-

sible in principle. However, the syntax of types and declarations still remains fixed. In

MOSTflexiPL, however, the basic principle “everything is an expression” implies that

all parts of the language can be extended simply by defining new operators.

An approach whose basic ideas and objectives are almost identical to that of MOST-

flexiPL is “π −− a Pattern Language” [6]. The concept called pattern there −− which is

“the only language construct in π” −− directly corresponds to an operator in MOST-

flexiPL: It possesses a syntax, composed of names (or symbols) and placeholders for

operands, and an associated meaning corresponding to the implementation of a

MOSTflexiPL operator. Thus, both approaches provide the same virtually unlimited

syntactic flexibility that ultimately stems from the lack of any predefined grammar.

A significant difference and advantage of MOSTflexiPL over π is once again the static

type system, since π is completely dynamically typed. In fact, the endeavour to recon-

cile extreme flexibility on the one hand with a maximum of static checkability on the

other hand has been and still is the most ambitious challenge in the development of

MOSTflexiPL.

Apart from that, MOSTflexiPL provides several other useful facilities not found in π,

e. g., implicit and deducible parameters (where the latter are dispensable in a dynami-

cally typed language) or import, export, and exclude declarations which allow,

amongst others, user-defined scoping rules and locally confined syntax extensions.

Finally, MOSTflexiPL might also be considered an adaptive grammar formalism [1,

10]. Because “everything is an expression,” there is a single non-terminal symbol X
denoting expressions. Every operator declaration induces a new production for X
whose right hand side can be derived from the operator’s signature by treating the op-

erator’s names as terminal symbols and replacing explicit parameters with the non-ter-

minal X. The type information associated with the parameters and the result type of

the operator can be added as grammar attributes. Import and export declarations con-

trol the set of currently active productions, while exclude declarations can be used to

rule out some otherwise possible derivations.

12 Conclusion

MOSTflexiPL is a programming language currently under development whose syntax

can be extended and customized by its users in a virtually unlimited way, where a

rather small number of core constructs is sufficient to support a broad range of differ-

ent programming styles. Therefore, it can be used, amongst others, as an extensible

general purpose programming language, but also as a host language for developing
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domain-specific languages. It possesses a static type system and is implemented by a

compiler and a run-time system written in C++.
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