
ACM 2012. This is the author’s version of the work. It is posted here by permission of the ACM for your personal use. Not for redistribution. The
definitive version was published in Onward! 2012 Proceedings of the ACM international symposium on New ideas, new paradigms, and reflections
on programming and software, pp. 159−−178, http://doi.acm.org/10.1145/2384592.2384608

MOSTf lex iP L
Modular, Statically Typed, Flexibly Extensible

Programming Language

Christian Heinlein

University of Applied Sciences, Aalen, Germany

chr istian.heinlein@htw-aalen.de

Abstract

Even though extensible programming languages have been
around for decades, they hav e not received much attention
so far. To obtain a more attractive solution, where extending
the language is almost as easy as writing normal programs,
extensibility should not be provided as a separate add-on,
but rather as the very heart of the language. Furthermore,
syntactic flexibility should not only allow to extend, but al-
so to completely change the syntax when desired. MOST-
flexiPL follows this approach by allowing users to define
new operators, control structures, type constructors, and
ev en declaration forms almost as easily as functions with-
out sacrificing static type safety. This is achieved by encod-
ing all constructs as generalized operators possessing any
number of names and operands in an arbitrary order, where
users have full control over associativity, precedence, and
ev en scoping rules. Even though the language is still under
development, there is a working compiler that translates
MOSTflexiPL programs to equivalent C++ code.

Categories and Subject Descriptors D.3.2 [Programming

Languages]: Language Classifications—Extensible Lan-
guages

Keywords Programming Language, Syntactic Extensibili-
ty, Static Type System

1. Introduction

Humans wish to abbreviate lengthy statements and to avoid
repetition; e. g., experts extend the vocabulary of natural
language with new words and jargon to optimize their con-
versations with other experts. Natural language syntax is
usually fixed, however, and so we also develop synthetic
languages such as mathematical notation providing tailored
syntax (e. g., for limits and integrals in calculus) to express

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Onward! 2012, October 19−−26, 2012, Tucson, Arizona, USA.
Copyright © 2012 ACM 978-1-4503-1562-3/12/10. . .$10.00

our thoughts even more concisely. If their standard syntax
appears insufficient for a particular domain, it can simply
be extended with new, more appropriate forms.

Similar to natural languages, however, programming lan-
guages typically force their users into a fixed syntactic
corset with only a few convenient notations for frequent id-
ioms, e. g., arithmetic operators and basic control struc-
tures. Their extensible vocabulary of functions, types, etc.
cannot really compensate for their lack of extensible syn-
tax; for example, iterating over a list with a tailored for

loop is more convenient than calling a for function with a
body closure; likewise, a tailored notation such as s[3..7]
conveys the notion of subsequence much more clearly than
a call to an aptly named method.

Of course, it would be possible to include the convenient
notations just mentioned in our programming languages,
but it is obviously impossible −− and presumably not even
desirable −− to predefine all the notations that any program-
mer in the world might ever consider useful. Instead it
seems more appropriate to give programmers the possibility
to define their own notations when they see fit, i. e., to
extend or customize the syntax of their programming lan-
guage, similar to the way mathematicians extend or cus-
tomize their notation on demand.

Even though this idea of syntactically extensible program-
ming languages is by no means new, it does not have at-
tracted much attention in the past. It seems that many pro-
grammers either do not know very much about extensible
languages at all or do not consider them particularly useful
for improving their everyday work. Maybe, this is due to
the fact that these languages are often split into two separa-
te parts: a “normal” programming language for writing
“normal” programs, plus a special machinery (or “magic”)
such as a macro system for performing syntactic exten-
sions, where the latter is considerably more complicated to
use than the former. Furthermore, many extensible lan-
guages still impose more or less significant syntactic re-
strictions, i. e., they only allow their users to stretch the
syntactic corset a bit, but not to completely take it off.

To address these shortcomings and to provide a more at-
tractive extensible programming language, syntactic exten-
sibility should not be offered as a separate add-on, but

rather as the very heart of the language, i. e., the entire lan-
guage design should be based on the concept of extensibili-
ty. Consequently, there should not be much difference be-
tween writing “normal” programs and performing syntactic
extensions, and doing the latter should be just as easy as the
former. Furthermore, the syntactic flexibility should be as
high as possible (as embodied in the MOSTflexiPL logo
used in the paper title), so that users can not only extend the
syntax of the language, but completely change it (or “turn it
upside down” as in the logo) when desired.

This paper presents MOSTflexiPL
1

based on this ap-
proach: users can define new operators, control structures,
type constructors, and even declaration forms almost as
easily as functions. Such broad extensibility is enabled by
encoding all constructs as generalized operators possessing
any number of names and operands in an arbitrary order.
Furthermore, users have full control over operator associa-
tivity and precedence as well as scoping rules. Despite its
tremendous flexibility, the language possesses a static type
system with bounded parametric polymorphism, where
types might also depend on constant values.

flexiPL can be used amongst others as an extensible gen-
eral purpose programming language, where broadly useful
extensions can be easily distributed as operator libraries, as
a host language for embedding domain-specific languages,
and as a playground for experimenting with new language
constructs. Because syntactic extensibility might not only
be used adequately to make programming simpler and pro-
grams easier to understand by carefully designing reason-
able new language constructs, but also inadequately to con-
fuse programmers and to obfuscate code by unthoughtfully
overwhelming a program with useless new language con-
structs, it might be advisable in practice to agree on “lan-
guage extension conventions” or “syntax guides” similar to
well-known coding conventions and style guides.

The remainder of the paper is structured as follows.
Section 2 unfolds the approach that has been taken to de-
sign an “extensibility-centered” programming language
such as flexiPL and introduces its fundamental language
constructs. Afterwards, Sec. 3 shows flexiPL in action by
presenting some instructive examples of user-definable lan-
guage extensions. Section 4 describes the basic structure of
the flexiPL compiler and explains some current limitations
of the language. Related work is discussed in Sec. 5, and
Sec. 6 concludes the paper.

2. Overview

How can we design a programming language with virtually
unlimited syntactic flexibility, which is at the same time
easy to use and statically type-safe? With such a language,
it should be easily possible to simulate language constructs
found in other languages. Therefore, it is advisable to study

1
Or just flexiPL, which is pronounced like “flexible” with a “hard”

(unvoiced) p instead of a “soft” (voiced) b.

many existing languages and to carefully analyze their con-
structs with the aim of unifying and generalizing them to
obtain a minimal set of orthogonal language features that
can be successfully combined and employed for many dif-
ferent purposes. When studying the grammar of program-
ming languages, one can usually identify four major areas
−− expressions, statements, types, and declarations −− that
shall be discussed in turn in the following subsections, be-
cause in a flexible language each of them should be fully
extensible and customizable.

2.1 Expression Syntax

2.1.1 Simple Operators and Exclude Declarations

C++, Ada, and other languages support operator overload-

ing, i. e., to define the meaning of predefined operators
(such as − _ and _ * _, where the underscores indicate the
positions of their operands) being applied to user-defined

types (e. g., complex numbers or matrices), which is just as
easy as defining functions. Even though this is not true syn-
tactic extensibility, it allows to use familiar operator syntax
such as −A * B where clumsy function or method syntax
such as A.negate().multiply(B) is required in other
languages.

C+++ [9], Haskell, and other languages go a significant
step further by allowing users to define new operator sym-
bols, e. g., _ ^ _ and _ ! to denote exponentiation and fac-
torial, respectively, which can then be used in expressions
such as − 2 ^ 3 ^ 4! just like predefined operators. Defin-
ing the meaning of these operators is again straightforward;
for example, in flexiPL the factorial operator can be (recur-
sively) defined as follows:

["n" : int] ← parameter list implementation
n "!" : int ← signature and result type ↓

{ if n > 1 then (n−1)! * n else 1 end }

Static type safety is achieved by specifying both the param-
eter or operand types and the result type of each operator.
Then, the application of an operator is type-correct (and its
type is equal to the operator’s result type), if its operands
are in turn type-correct and their types match the corre-
sponding parameter types.

Apart from defining the meaning of new operators, it is also
desirable to specify their associativity and precedence. The
latter is usually accomplished by allowing users to specify a
numerical precedence value (e. g., from 0 to 9) for infix op-
erators and by assigning a fixed precedence to prefix and
postfix operators which is either higher or lower than that
of all infix operators. Obviously, this approach suffers from
a number of limitations:

• It is impossible to define a precedence between two adja-
cent values. Even though this can be mitigated in practice
by extending the range of possible values and trying to
always leave gaps for future extensions, this does not
solve the problem in principle.

• While it is possible to carefully design the precedence re-
lationships within a single operator library, operators
from different libraries will have an accidental relation-
ship which might or might not be appropriate.

• A fixed precedence for prefix and postfix operators with
respect to infix operators disallows, for example, that ne-
gation binds stronger than addition, but weaker than ex-
ponentiation, as accustomed from mathematics.

An effective solution for these problems is to define an op-
erator’s precedence only relative to other operators, i. e., to
establish only a partial instead of an (artificial) total order-
ing, and to extend this ordering from infix to prefix and
postfix operators. Furthermore, it must be possible to ex-
tend the ordering later, e. g., to define precedence between
operators from different libraries.

In flexiPL, both associativity and precedence can be ex-
pressed in terms of very general exclude declarations. For
example, the well-known “× and ÷ before + and −” rule can
be expressed by forbidding additive operators as top-level

operators of the operands of multiplicative operators. This
implies, for example, that of the two basically possible in-
terpretations of 2 + 3 * 4 only the one having the multipli-
cation below the addition will be correct. To declare a bina-
ry operator (or a group of such operators) left- or right-
associative, it is sufficient to exclude the operator itself as
top-level operator of its right or left operand, respectively.
For example, the exclude declarations for the predefined
multiplication operator for int values read as follows:

[

"x" : int; "y" : int; ← parameters
x :− additive; ← exclude declarations
y :− additive|multiplicative ↵

]

x "*" y : int ← signature and result type
{ ... } ← predefined implementation

If the precedence relationships constitute only a partial or-
dering, incomparable operators might clash in an expres-
sion, causing it to become syntactically ambiguous. This
can either be remedied by the user with explicit bracketing
or possibly by the compiler by automatically ruling out
possibilities which are not type-correct, i. e., to use seman-

tic information (the types of operands) to break syntactic

ambiguities. By incorporating type information into the
parsing process, it is even possible to make the precedence
of an overloaded operator depend on the types of its
operands. For example, addition might have a higher priori-
ty than string concatenation, even though both operations
might be denoted by an infix plus operator.

2.1.2 Generalized Operators with Special Cases

Apart from unary and binary operators, programming lan-
guages often provide specialized constructs such as
_ ? _ : _ (the ternary conditional operator in C et al.) and

_ [_] (the array subscripting operator in many lan-
guages). To allow users to define similar constructs, the no-
tion of operators should be generalized to multi-part opera-

tor combinations (sometimes also called distfix or mixfix
operators) with any number of names (or operator symbols)
and any number of operands in an arbitrary order, e. g.:

[

"x" : bool;

"T" : type; "y" : T; "z" : T

]

x "?" y ":" z : T

{ if x then y else z end }

If such a multi-part operator possesses outer operands ap-
pearing before the first or after the last operator name, its
application is analogous to that of a prefix, infix, or postfix
operator and therefore it should also be possible to specify
associativity and precedence. For example, the conditional
operator in C has the same associativity and precedence as
the infix assignment operators, while the subscripting oper-
ator is usually treated like a postfix operator with very high
precedence.

If an operator possesses only inner operands, i. e., if it
starts and ends with an operator name, its application is
analogous to a bracketed expression. In fact, if it is possible
to define arbitrary multi-part operators, the parentheses
(_), which almost always constitute a very special built-
in language construct, become an ordinary user-definable
circumfix operator, whose application simply returns the
value of its single operand:

["T" : type; "x" : T]

"(" x ")" : T

{ x }

To provide a maximum of flexibility, operator names
should be composable of arbitrary characters, in contrast to
many other extensible languages, where they are frequently
restricted to either identifiers (i. e., sequences of letters and
digits starting with a letter) or sequences of special charac-
ters, where parentheses are usually excluded due to their
special, predefined meaning.

Remarkable special cases of this generalized concept of op-
erators are:

• Nullary operators, possessing only names but no
operands, can be used to represent literals, constants, and
variables (even with unusual multi-part names such as
2nd last char), i. e., these need not be provided as sep-
arate language constructs.

• Anonymous operators, possessing only operands but no
names, can be used, amongst others, to denote multiplica-
tion (e. g., 2 a instead of 2 * a, as accustomed from
mathematics) or string concatenation (e. g., firstname
" " lastname, as in AWK), for example:

["x" : int; "y" : int]

x y : int

{ x * y }

• As a very special case, an anonymous unary operator

with parameter type X and result type Y happens to repre-
sent an implicit type conversion from X to Y, because it
can (“invisibly” because it has no names) be applied to
any subexpression with type X and returns a value of
type Y. (This also implies that conversions can be applied
transitively.)

Of course, functions are also just a special case of opera-
tors now, whose calling syntax can be defined at will by
choosing an appropriate operator signature, e. g., max _ _
(as in many functional languages), max (_ , _) (as in
many imperative languages), or even _ _ max (as in
PostScript).

It should be emphasized that the apparently simple general-
ization of traditional operators to multi-part operator com-
binations actually provides the key to flexiPL’s flexibility,
because defining an operator −− which is still all but easy as
defining a function in other languages −− now means to per-
form a syntax extension along the way, and therefore ex-
tending the syntax of the language becomes the same as
“ordinary” programming, as demanded in the introduction.

2.1.3 Parameter Passing and Variable Types

In a language with imperative features, where expressions
can have side effects, call by value seems to be the appro-
priate mode for passing parameters to operators. Further-
more, operands should be evaluated in their “natural” order
from left to right, as, e. g., in Java, in contrast to C and C++
where the order might be arbitrarily chosen by the compiler
to allow for a maximum of optimizations.

Some operators, however, e. g., Boolean operators with
“shortcut evaluation” and the aforementioned conditional
operator, cannot be implemented faithfully if all operands
are evaluated in advance. Instead it is necessary to pass in-
dividual operands unevaluated (or “by expression”) and to
allow the operator implementation to decide whether and
when they should be evaluated. Technically, this can be
achieved by wrapping these operands into parameterless lo-
cal functions (or closures), but the user should not be bur-
dened with doing that explicitly. Because an operator might
well have both call by value and call by expression
operands, it should be possible to mark individual parame-
ters instead of an entire operator as “call by expression;”
e. g., to give a more realistic implementation of the condi-
tional operator:

[

"x" : bool;

"T" : type; "y" : T {}; "z" : T {}

]

x "?" y ":" z : T

{ if x then y else z end }

Here, x is passed by value, while y and z are passed by ex-
pression (indicated by {}) and will be evaluated only if the
then resp. else part gets executed.

Call by reference is another mode occasionally found in
imperative languages that actually allows variables instead
of their values to be passed (where variables might also in-
clude array elements and the like). Because sometimes it is
also necessary to return variables (e. g., the prefix ++ oper-
ator of C returns the variable it increments as an “L-val-
ue”), it is more effective to provide a general notion of vari-

able types (denoted T? in flexiPL) with accompanying
operators ? _ to explicitly obtain the value of a variable
(plus an implicit type conversion from T? to T that does the
same more conveniently) and _ << _ (or _ >> _) to assign
to a variable of type T? a value of type T (or vice versa).
This is similar to reference types in C++ (T&, not to be con-
fused with pointer types and references in other languages),
but without their irregularities, e. g., that references to refer-
ences are forbidden, and int x actually declares x with
type int& (or L-value of type int) which must be implicit-
ly converted to int (or R-value of type int) on demand.
Using a variable type as a parameter or result type of an op-
erator effectively allows call or return by reference:

["x" : int?]

"++" x : int?

{ x << ?x + 1; x }

2.2 Statement Syntax

Imperative languages usually distinguish between expres-
sions and statements, a distinction that is partially discre-
tionary and artificial. C and C++, for example, provide both
statement sequences and sequential executions within
expressions (comma operator); similarly, there is a condi-
tional statement (if) as well as the already mentioned con-
ditional operator. This replication could be avoided by uni-
fying statements and expressions, similar to functional lan-
guages. For example, by subsuming statements beneath ex-
pressions, an operator if (_) _ else _ (with four opera-
tor names and three operands) can in fact be used just like a
conditional statement in C.

As a consequence, if the syntax of expressions can be ex-
tended by defining new operators, the syntax of statements
immediately becomes extensible, too, since control struc-
tures such as if, while, for, etc. are nothing else but op-
erators then, e. g.:

[

"x" : int?; "x1" : int; "x2" : int;

"B" : type; "body" : B {}

]

"for" x "from" x1 "to" x2 "do" body "end"

: int

{

x << x1;

while x <= x2 do body; ++x end

}

Again, to provide a maximum of flexibility, operator syntax
should be overloadable in an arbitrary fashion. For exam-
ple, it should be possible to define both if _ then _ end

and if _ then _ else _ end (in fact, both of these opera-
tors are predefined), even though this might complicate
parsing of expressions starting with if ... then ...

When comparing operator definitions with grammar pro-
ductions, this means that the grammar defined by all opera-
tors together can be an arbitrary context-free one, i. e., the
user should not be burdened with restrictions such as LL(k)
or LR(k), even though they could simplify the parser
(which then has to perform backtracking, cf. Sec. 4.1.1).
This view is confirmed by the fact that parser generators
typically provide workarounds for such restrictions, e. g.,
JavaCC provides “syntactic and semantic lookahead speci-
fications” to circumvent the LL(1) requirement, while Bi-
son provides “generalized LR parsing” to overcome the
LALR(1) restriction.

Another issue that needs consideration in the context of
statements are visibility or scoping rules. For example, C++
and Java allow variables to be declared in the initialization
part of a for loop, whose scope is limited to the loop. Sim-
ilarly, let forms can be used in functional languages to in-
troduce names with limited scope. To allow users to define
similar constructs, the visibility of operators must be user-
controllable. More specifically, it should be possible to
specify for an operator:

• Which operators are exported from an application of this
operator? This is typically specified recursively in terms
of the operators exported by the individual operands. For
example, an application of the predefined sequential
composition operator _ ; _ exports the union of the oper-
ators exported by its operands, while most other opera-
tors do not export anything (which terminates the recur-
sion). As another important recursion base case, a decla-
ration (cf. Sec. 2.4) exports the operator declared by it.

• Which operators are imported by the individual operands
of an application of this operator? This is also typically
specified recursively in terms of the operators imported
by the entire operator application and possibly the opera-
tors exported by preceding operands

2
. For example, the

first operand of the sequential composition operator sim-
ply imports the operators imported by the entire operator
application (which is also the most frequent default case
for operands of other operators), while the second
operand additionally imports the operators exported by
the first operand to make them visible there. As the single

2
As a special rule, a call-by-expression operand does not export any-

thing, because it effectively constitutes the implementation of an
anonymous, parameterless local operator (cf. Sec. 2.1.3).

recursion base case, a top-level expression (actually de-
noting a flexiPL program) imports the set of all prede-
fined operators.

As an example, the following operator use _ in _ end be-
haves identical to the predefined sequential composition
operator, except that it does not export operators declared in
its first operand:

[

"X" : type; "x" : X;

"Y" : type; "y" : Y;

x :+ ^; ← import declaration for 1st operand
y :+ ^|x; ← import declaration for 2nd operand
^ :+ y ← export declaration

]

"use" x "in" y "end" : Y

{ y }

This can be used to achieve information hiding, e. g.:

use

"n" : int?; n << 0

in

"inc" : int

{ n << n + 1 } ← OK, n is visible here
end;

inc; ← OK, inc is visible here
n << 5 ← error: n is not visible here

2.3 Type Syntax

2.3.1 Type Constructors and Static Operators

The next area that needs consideration are types. Usually, a
programming language provides a couple of basic types

(such as int or bool), plus a few generic type constructors

that can be used to construct new types. For example, _ *

constructs pointer types in C, while _ [_] constructs array
types.

From a purely syntactic point of view, type constructors
are operators (as already indicated by the underscore nota-
tion) that are applied to types and possibly non-type values
and which return new types. For example, int* can be in-
terpreted as an application of the postfix operator _ * to the
basic type int (which might again be interpreted as an ap-
plication of the nullary constant operator int, cf. the spe-
cial cases in Sec. 2.1.2), while bool [10] is an application
of the operator _ [_] to the type bool and the int

value 10. Using this analogy, C++ class templates and Java
generic classes correspond to functions on the type level,
whose arguments are enclosed in angle brackets instead of
parentheses.

If types can actually be used as operands and result val-
ues of operators, the syntax of types becomes immediately
extensible, too, simply by defining type-valued operators.
For example, one might define an operator [_] to con-
struct list types such as [int] in Haskell (which is more

convenient than list<int>) or an operator _ { _ x _ } to
construct matrix types such as float{3x4} (looking more
familiar to mathematicians than matrix<float, 3, 4>).
To actually define such operators, a meta-type called type

is required whose values are types and which can be used
as a parameter and result type of operators. In fact, types
become just expressions whose type is equal to type.

Nevertheless, types remain something special in a statically
typed language, because the compiler must be able to rea-
son about them. In particular, it must be decidable at com-
pile time whether two types are equal. This implies imme-
diately, that operators whose behaviour cannot be statically
determined, must not be used in type expressions, even if
they return a value of type type.

When looking back at type constructors in conventional
languages, these actually do not perform any computations
to construct new types, but merely perform mappings from
types and possibly other values to types according to the
following rules:

• Every type constructor embodies an injective function,
i. e., its applications to the same values produce the same
result, while applications to different values produce dif-
ferent results.

• The domains of these functions are pairwise disjoint, i. e.,
the types returned by a particular type constructor are dif-
ferent from all types returned by other type constructors.

To make sure that user-defined type constructors obey the
same rules, they must be defined as so-called static opera-

tors, which do not possess a user-defined implementation
that could be executed at run-time to compute its result val-
ue, but only an (optional) parameter list, a signature, and a
result type

3
, e. g.:

["T" : type; "M" : int; "N" : int]

T "{" M "x" N "}" : type

Their implementation, which is automatically provided by
the run time system, guarantees the “injective and disjoint
mapping behaviour” described above. As a special case, a
parameterless static operator simply returns a unique con-
stant value. As another special case, literals and constants,
i. e., nullary operators initialized with an arbitrary value, are
also treated as static operators, even if the initialization val-
ue is not known at compile time −− it suffices to know that
the operator will always return the same value.

Based on this notion of static operators, a type can now
be defined as a static expression, i. e., an expression that is
solely made up of static operators. (Operators which are not
static, are called dynamic in the sequel.) According to the
above rules, this implies that static expressions which are
structurally equal −− a property that can easily be examined

3
Even though the primary reason for introducing static operators is to

use them as type constructors, it turns out that they can be successful-
ly employed for other purposes, too (cf. Sec. 3.1). Therefore, their re-
sult type is not restricted to the meta-type type.

at compile time −− are guaranteed to evaluate to the same
value at run time. Therefore, equality of types can simply
be defined as structural equality of the corresponding ex-
pressions, just as in conventional languages.

Restricting types to static expressions implies that they can-
not contain computations of values (because computations
are performed by dynamic operators), but only constant
values. In contrast to, e. g., C++ templates, however, these
constants need not be compile-time constants nor need they
have an integral type. It is in fact possible to initialize a
constant with a dynamically computed value and use that
constant in type expressions afterwards, e. g.:

"M" := ...; ← compute values of M
"N" := ...; ← and N at run time
"A" : float{MxN}; ← and use them in type
"B" : float{MxN}; ← expressions afterwards

Even though the compiler cannot know the particular value
of the constant, it knows that it will always be the same and
this is sufficient to faithfully determine equality of types.
More precisely: It implies that structurally equal static ex-
pressions will evaluate to the same value at run time, as al-
ready mentioned before, i. e., types regarded equal by the
compiler will actually be equal at run time, too. It might
happen, however, that structurally different expressions also
evaluate to the same value, for example if they contain dif-
ferent constants having the same value. That means, that
types considered different by the compiler might happen to
be equal at run time, but this kind of “false alarms” cannot
break static type safety.

The actual value of a type expression is rarely used at run
time, because currently flexiPL does not provide any reflec-
tive language features. However, the non-type values con-
tained in a type, e. g., the dimensions of a matrix type,
might well be useful (cf. the example given in Sec. 3.6).

2.3.2 Type Aliases and Virtual Operators

Because parametric types such as lists and matrices can be
combined, e. g., to form a list of list of matrices, the result-
ing type expressions can get rather complex. Therefore, it
should be possible to abbreviate them, similar to using
typedef in C, i. e., to define type aliases. Going a step fur-
ther, it should also be possible to define parametric aliases,
e. g., to define T{N} as an abbreviation or synonym for
T{Nx1} for all types T and integer values N.

At first sight, one might simply define an operator
_ { _ } with result type type, a type parameter T, and an
int parameter N, whose implementation computes and re-
turns the type T{Nx1}. This will not work, however, be-
cause operators possessing a user-defined implementation
are classified as dynamic operators which cannot be used in
types because these must be static expressions.

To make the compiler accept an expression such as
float{3} as a type and to actually consider it equal to
float{3x1}, an appearance of the former should be im-

mediately replaced by the latter at compile time, i. e., the
operator _ { _ } should be treated similar to a macro. To
remain within the bounds of static type safety, howev er, and
to seamlessly integrate this kind of macros into the remain-
ing language, _ { _ } should still be defined and used like
an operator:

["T" : type; "M" : int]

T "{" M "}" = T{Mx1};

"u" : float{3};

This means in particular:

• The macro has a parameter list, a signature, and a result
type (which is not given explicitly, though, but is deduced
as the type of the right hand side), just like a normal oper-
ator definition.

• Its right hand side must be a type-correct expression, just
like the implementation of a dynamic operator.

• Its applications look identical to and are type-checked in
the same way as applications of other operators.

Only after an application has been confirmed as a type-
correct expression −− which implies that its operands are in
turn type-correct and their types match the types of the cor-
responding parameters (cf. Sec. 2.1.1) −−, it is replaced by
the right hand side, where the parameters are in turn re-
placed with the corresponding operands. Because the right
hand side has already been proven type-correct and the
operand types match the corresponding parameter types,
the finally resulting expression is necessarily type-correct,
too. That is, it is only necessary to type-check the definition
and the applications of a macro, not the expanded expres-
sions, which implies that the expansion cannot produce un-
expected errors.

Because of the striking similarities with “real” operators,
these macros will be called virtual operators in the sequel
and their right hand side is called their realization.

2.4 Declaration Syntax

Given the general notion of operators that has emerged as
the cornerstone of the language, even declarations can be
seen as a kind of expressions, i. e., as applications of special
predefined declaration operators to appropriate operands.
For example, a Pascal variable declaration such as x : int

is syntactically an application of an infix operator _ : _ to
the identifier x and the type int. Likewise, a C function
declaration can be interpreted as an application of a decla-
ration operator _ _ (_) { _ } whose operands represent
the functions’s result type, its name, its parameter list
(which is in turn a sequence of parameter declarations), and
its implementation (an arbitrary expression).

In fact, flexiPL provides several similarly shaped decla-
ration operators such as [_] _ : _ { _ }, which can be
used to define the various kinds of operators introduced so
far, i. e., static, dynamic, and virtual operators, each with or

without parameters. Because operator names might be arbi-
trary character sequences (cf. Sec. 2.1.2), they must be en-
closed in quotation marks to avoid potential ambiguities
when parsing an operator declaration.

4
Afterwards, howev-

er, when applying an operator, the bare names without quo-
tation marks can be used.

Even though declarations are just expressions from a syn-
tactic point of view, they play a very special role for the
compiler, because they influence the subsequent compila-
tion process by defining new operators that can be applied
afterwards. Therefore, after having successfully processed a
declaration, the compiler must add the operator declared by
it to its internal table of operators that governs the subse-
quent parsing process (cf. Sec. 4.1.1).

If a user wants to define a new declaration operator, for ex-
ample to declare variables in a C-like notation, he is faced
with similar problems as with defining type aliases in
Sec. 2.3.2: Using a normal dynamic operator for that pur-
pose, whose implementation contains the declaration of the
variable, will not work, because the variable declared that
way will be local to the implementation, i. e., a subsequent
application of this operator will not have any effect at com-
pile time.

However, the basic solution to this problem is also simi-
lar to that for type aliases: If the new declaration operator is
defined as a virtual operator, whose realization consists of
the declaration of a variable, a subsequent application will
be immediately replaced with this realization, causing the
variable declaration to actually appear at this point of appli-
cation:

["T" : type; "name" : string]

T name = name : T?;

int "x" ← equivalent to: "x" : int?

In general, the matter is more subtle, however: Declarations
appearing in the realization of a virtual operator shall typi-
cally depend on the parameters of this operator, e. g., in the
previous example the name and the type of the variable are
passed as parameters. This implies that the actual name of
the declared variable is not known when the virtual opera-
tor is defined, which makes it difficult to type-check its re-
alization in more complex cases (e. g., if the variable should
be assigned an initial value afterwards). On the other hand,
type-checking virtual operators already at their definition
shall in no way be compromised. In fact, it seems possible
to reconcile the flexibility needed for more advanced user-
defined declaration operators with complete static type
checking, but the details have not yet been worked out com-
pletely (see also Sec. 4.2.1).

Because every operator declaration effectively consti-
tutes a syntax extension (cf. Sec. 2.1.2), defining user-
4

It is planned to relax this restriction in the future, e. g., by allowing
standard identifiers without quotation marks, too. In fact, users should
be able to freely define the set of character sequences that can be used
without quotation marks.

defined declaration operators means in the end to extend or
customize even the syntax that is used to define new syntax.

2.5 Summary

Reviewing expression, statement, type, and declaration syn-
tax has revealed that a general notion of operators with any
number of names and operands in an arbitrary order is suf-
ficient to achieve virtually unlimited syntactic flexibility
simply by defining new operators. This can be summarized
as the most fundamental design principle of MOSTflexiPL:
Everything is an expression, i. e., the application of an oper-
ator to operands which are in turn expressions.

A second important principle could be termed: One law

for all, i. e., there is no difference whatsoever between user-
defined and predefined operators. They are used in exactly
the same way, obey exactly the same rules, etc. The only
special thing with (some) predefined operators is the fact
that they must be predefined, because they cannot (or not
sensibly) be defined in terms of other operators.

3. Examples

To giv e the reader an impression of the possibilities of
flexiPL, some instructive examples of user-definable lan-
guage extensions shall be presented in the sequel. Their
complete source code as well as more extensive examples
can be found on the website flexipl.info.

3.1 Open Types

flexiPL provides predefined basic types char, bool, int,
and float with the usual arithmetic and logic operators as
well as two predefined type constructors, _ ? and _ *, to
construct variable and sequence types, respectively. While
variable types T? have been introduced in Sec. 2.1.3, the
type T* represents sequences of elements of type T of any
(finite) length. For such a sequence s, the expression #s re-
turns the length of s, i. e., the number of its elements, while
s[i] returns the i-th element of s counted from 1 (because
humans start counting at 1). Sequences and individual ele-
ments can be concatenated with the operator _ , _ to con-
struct longer sequences.

flexiPL does not provide a direct means to construct
compound types, however, because this can be achieved in
a rather flexible way by combining other language features.
In fact, after defining a few additional operators below, the
following code will work:

"person" : type;

"name" : person −> string;

"John" : person;

John.name << "John Smith";

"spouse" : person −> person;

"Jane" : person;

John.spouse << Jane;

Jane.spouse << John;

print the name of Jane’s spouse

First of all, string can be defined as a type alias (cf.
Sec. 2.3.2) for a char sequence:

"string" = char*;

The predefined declaration operator _ : _ declares parame-
terless static operators, i. e., constants possessing a uniquely
generated value (cf. Sec. 2.3.1). Thus, person is a unique
new type, while John and Jane denote unique objects or
values of that type.

The arrow is the following user-defined type constructor
that maps each pair of types X and Y to a unique new type
X −> Y that is intended to represent an attribute of type X

with target type Y:

["X" : type; "Y" : type]

X "−>" Y : type;

Accordingly, name and spouse denote attributes of type
person.

The dot is also a user-defined static operator mapping an
object x of any type X and an attribute a of a corresponding
type X −> Y to a unique variable of type Y? that can be used
to store the object’s value of the attribute:

[

"X" : type; "Y" : type;

"x" : X; "a" : X −> Y

]

x "." a : Y?;

Besides the explicit parameters x and a appearing in its sig-
nature, this operator possesses deduced parameters X

and Y, which appear in the types of other parameters and
therefore can be deduced from the types of the correspond-
ing operands. For example, because John is an object of
type person and name is an attribute of type person −>

string, the expression John.name is a type-correct appli-
cation of the dot operator deducing X and Y as person and
string, respectively, and therefore returning a unique vari-
able of type string? that is used to store the name of
John. Likewise, the spouse of John is set to Jane and
vice versa.

The operators _ ’s _ and the _ of _ are just alternative
syntactic forms of the dot operator that make the natural
language-like expression print the name of Jane’s

spouse (using the predefined output operator print _)
equivalent to print Jane.spouse.name:

[

"X" : type; "Y" : type;

"x" : X; "a" : X −> Y

]

x "’s" a : Y?

{ x.a };

[

"X" : type; "Y" : type;

"x" : X; "a" : X −> Y

]

"the" a "of" x : Y?

{ x.a };

Apart from these natural language gimmicks, the above
concept of attributes is very flexible, because it allows at-
tributes of a type to be defined modularly and incrementally
(e. g., spouse is defined later), similar to inter-type decla-
rations in aspect-oriented programming. As outlined in
[11], the concept can be generalized to bidirectional rela-
tionships, which (when combined with implicit type con-
versions) can be used as a superior replacement for single,
multiple, and even repeated inheritance.

3.2 Construction of Subsequences

Using the predefined operators for sequences (cf. Sec. 3.1)
plus some other predefined and user-defined operators in-
troduced earlier, it is easily possible to define an operator
subseq _ _ _ that constructs and returns a subsequence of
a giv en sequence:

[

"T" : type;

"s" : T*; "i" : int; "j" : int

]

"subseq" s i j : T*

{

"t" : T*?; "k" : int?;

for k from max i 1 to min j #s do

t << t, s[k]

end;

t

};

When looking at the implementation (or an accompanying
documentation), one can see that the result sequence t will
contain all elements of s whose index is between i and j,
both inclusively, even in cases where these indices are out
of range. But a mere application of the operator such as
subseq s 3 7 does not give any clue whether the border el-
ements 3 and 7 are included into the result or not, and it
could just as well mean a subsequence starting at the third
element and having at most seven elements.

On the other hand, a specifically designed notation such
as s[3..7] seems to convey the intended meaning much
more clearly, and by playing around with different combi-
nations of square and round brackets according to mathe-
matical habits, e. g., s[3..7) and s(3..7], the inclusion
or exclusion of the border elements can be expressed quite
naturally, too.

5
Additional abbreviations such as s[3..]

(meaning s[3..#s]), s(..7) (meaning s(1..7)), or
ev en s[..) (meaning s[1..#s)) should also be rather

5
This implies, by the way, that bracket symbols can be used just like

any other character, in particular they are not required to be balanced.

self-explanatory. By combining the different notations, the
subsequence starting at the third element and having (at
most) seven elements can then be written as s[3..][..7].

All the operators just introduced can easily be defined as
syntactic wrappers of the original operator subseq _ _ _,
e. g.:

["T":type; "s":T*; "i":int; "j":int]

s "[" i ".." j "]" : T*

{ subseq s i j };

["T":type; "s":T*; "i":int; "j":int]

s "[" i ".." j ")" : T*

{ subseq s i j−1 };

["T":type; "s":T*; "i":int]

s "[" i ".." "]" : T*

{ subseq s i #s };

3.3 Iteration over a Sequence

Many programming languages provide a tailored for state-
ment to conveniently iterate over containers. In flexiPL, it
is a simple exercise to define a corresponding user level op-
erator for _ in _ do _ end possessing the following ex-
plicit parameters:

• a variable var with type T?, where T might be any type;

• a sequence seq with type T*;

• a loop body body with an arbitrary type B.

Consequently, the operator also needs deduced parameters
T and B with type type. Its definition could read as fol-
lows:

[

"T" : type; "B" : type;

"var" : T?; "seq" : T*; "body" : B {}

]

"for" var "in" seq "do" body "end" : int

{

"i" : int?;

for i from 1 to #seq do

var << seq[i];

body

end

};

The operator possesses result type int, since every opera-
tor must have a result type and, by convention, a loop re-
turns the number of iterations it has performed. Therefore,
the value returned by the (also user-defined) loop operator
for _ from _ to _ do _ end can directly be used as the
result value of the new operator.

The empty curly brackets at the end of the declaration of
the parameter body indicate that the corresponding operand
shall not as usual be passed by value, but rather as an un-

evaluated expression, similar to lazy evaluation in function-
al languages and “call by name” in Algol (cf. Sec. 2.1.3).

The actual evaluation of the operand −− whose effect typi-
cally depends on the current value of the variable var −− is
performed each time the parameter body is used (i. e., ap-
plied) inside the implementation of the for operator, i. e.,
once per iteration.

Frequently, list comprehensions are even more convenient
to use than for loops, e. g.:

"persons" : person* = ...;

"p" : person?;

"long" "names" := select p.name from

p in persons where #p.name >= 20 end;

Defining the necessary generic operator is also quite easy:

[

"X" : type; "Y" : type;

"var" : X?; "seq" : X*;

"cond" : bool {}; "expr" : Y* {}

]

"select" expr "from" var "in" seq

"where" cond "end" : Y*

{

"res" : Y*?;

for var in seq do

if cond then

res << res, expr

end

end;

res

};

3.4 Iteration over Multiple Sequences

It is a bit more difficult to generalize the for operator in-
troduced in Sec. 3.3 to iterate over multiple sequences si-
multaneously, stopping at the end of the shortest one, e. g.:

"s1" : int* = ...; "v1" : int?;

"s2" : person* = ...; "v2" : person?;

for v1 in s1 and v2 in s2 do ... end

The particular challenge is to deal with the combination of
a previously unknown number of sequences and the fact
that they might have different types: An unknown number
of homogeneous sequences could be captured with a se-
quence of sequences, while a fixed number of sequences
with different types could be handled with a corresponding
fixed number of deduced parameters. The solution present-
ed in the sequel makes use of some interesting features of
flexiPL not introduced so far, in particular local operators
and closures.

As a preliminary, the following virtual operator (cf.
Sec. 2.3.2) can be used to make available at compile time
the type T of an arbitrary expression x:

["T" : type; "x" : T]

"typeof" x "end" = T;

For example, "x" : typeof 1 end would be equivalent to
"x" : int, because the type of the subexpression 1 is int.
A more useful application exploits the fact that a declara-
tion returns the operator declared by it, i. e., its type is equal
to the corresponding operator type. Therefore, the follow-
ing declaration defines v as a variable whose value is an op-
erator with parameter and result type int, similar to a func-
tion pointer variable in C:

"v" : typeof ["x" : int] "f" x : int end ?

As another preparation, it is usually helpful to phrase the
envisaged syntactic form as a set of grammar productions
in, e. g., BNF, which can be transformed to a set of operator
declarations afterwards:

loop : "for" inits "do" body "end"

inits : init "and" init

| inits "and" init

init : var "in" seq

Here, body can be an arbitrary expression of some type B,
while var and seq can be arbitrary expressions of type T?

and T*, respectively, for some T, which might be different
for each pair of var and seq.

To abstract from these different variable and sequence
types, the auxiliary operator _ in _ takes a variable var

and a sequence seq and returns a locally defined operator
assign _ with a parameter i of type int and result type
bool, i. e., the type of this operator does not depend on the
type T. This operator can then be applied to an index i in
order to assign the i-th element of seq to var (if such an
element exists; otherwise, the operator does nothing and re-
turns false). Since the operator _ in _ returns an opera-
tor, its result type must be an appropriate operator type that
is obtained with the above operator typeof _ end and ab-
breviated with the name Init:

"Init" =

typeof ["i" : int] "assign" i : bool end;

["T" : type; "var" : T?; "seq" : T*]

var "in" seq : Init

{

["i" : int]

"assign" i : bool

{

if i <= #seq then

var << seq[i]; true

else

false

end

}

};

Because the operator _ in _ always returns an operator of
type Init, no matter to which variable and sequence types
it has been applied, the results of multiple −− even

heterogeneous −− applications can now easily be joined to-
gether into a sequence of type Init* with the following
operators _ and _:

["x" : Init; "y" : Init]

x "and" y : Init*

{ x, y };

["x" : Init*; "y" : Init]

x "and" y : Init*

{ x, y };

Therefore, an expression such as v1 in s1 and v2 in s2
and v3 in s3 actually returns a sequence of three different
assign _ operators, one for each variable/sequence pair.

After these preparations, the actual loop operator for _
do _ end can be defined as follows:

[

"B" : type;

"inits" : Init*; "body" : B {}

]

"for" inits "do" body "end" : int

{

"i" : int?; i << 1;

while

"f" : bool?; f << true;

"init" : Init?;

for init in inits do

["i":int] "assign" i : bool = init;

f << f && assign i

end;

f

do

body;

i << i + 1

end

};

The outer while loop (whose condition part is a more com-
plex expression than usual) constitutes the actual iteration
over the sequences, while the inner for loop (using the for

operator for a single sequence defined in Sec. 3.3) iterates
over the sequence inits in order to execute the assign _

operators it contains. For that purpose, the current value of
the iteration variable init is used to initialize a local oper-
ator assign _ that is afterwards applied to the current in-
dex value i. The result values of these operators are con-
junctively combined in the Boolean variable f in order to
detect the end of either sequence and to terminate the outer
loop.

3.5 Iteration over Other Containers

As another exercise, the previously developed for operator
can be generalized to arbitrary container types C which pro-
vide the basic operators # _ to query their length and
_ [_] to obtain individual elements, by passing these op-
erators as implicit parameters to the auxiliary operator

_ in _ (which is the only operator that actually needs
them):

[

"T" : type; "var" : T?;

"C" : type; "cont" : C;

["c" : C] "#" c : int;

["c" : C; "i" : int] c "[" i "]" : T

]

var "in" cont : Init

{

["i" : int]

"assign" i : bool

{

if i <= #cont then

var << cont[i]; true

else

false

end

}

};

The parameters # _ and _ [_] do neither appear in the op-
erator’s signature (and therefore they are not explicit) nor in
the type of other parameters (therefore they are not de-
duced). This third kind of parameters is called implicit.

When an operator with implicit parameters is applied,
each of these parameters is automatically initialized with an
operator that is (i) visible at the point of application, (ii) has
the same syntax as the parameter, and (iii) is able to imple-

ment the parameter. Generally, an operator o1 can be imple-
mented by another operator o2, if an application of o2 to the
explicit parameters of o1 would be a correct expression
whose type is equal (or implicitly convertible) to the result
type of o1. For example, any unary operator with parameter
type person* and result type int can be implemented by
the generic length operator # _ for sequences, because an
application of this operator to an operand with type per-

son* is a correct expression with type int.
If no suitable operator is found for an implicit parameter,

the respective operator application is rejected by the com-
piler. This means, that implicit parameters can be used to
specify constraints for deduced parameters, as in the exam-
ple above: An application of _ in _ for particular types T
and C will only be accepted by the compiler, if it finds visi-
ble operators # _ and _ [_] that can implement the corre-
sponding implicit parameters for these types.

If, for example, v is a variable with type person? and s

is a sequence with type person*, the expression v in s is
correct, because after deducing T and C as usual to be equal
to person and person*, respectively, the implicit parame-
ters # _ and _ [_] can be implemented by the correspond-
ing predefined sequence operators. If, however, ls is a list
with type [person] (cf. Sec. 2.3.1), the expression
v in ls is not correct, because after deducing T and C as
person and [person], respectively, neither an operator
_ with parameter type C (i. e., [person]) nor a suitable

operator _ [_] can be found. If these operators would be
defined for lists, however, v in ls would become a correct
expression and thus lists could be used in iterations just like
sequences.

3.6 Matrices

To conclude the set of examples, an excerpt from a library
of matrix operators shall be presented that can be used as
follows:

"A" := float{2x3}(1.5, −2.7, ...);

"B" := float{3x4}(−3.2, 4.1, ...);

"C" := A B;

The matrices A and B are defined by enumerating their ele-
ments in row-major order (using ellipses for brevity), em-
ploying the predefined comma operator (cf. Sec. 3.1) to
combine them into a sequence of type float*. Afterwards,
matrix C is defined as the product of A and B, i. e., it will
have type float{2x4}.

First of all, a generic type constructor for matrix types re-
sembling the mathematical notation T M×N has already been
shown in Sec. 2.3.1:

["T" : type; "M" : int; "N" : int]

T "{" M "x" N "}" : type;

The elements of a matrix can be stored in row-major order
in an attribute elems of type T* similar to Sec. 3.1:

[

"T" : type; "M" : int; "N" : int;

"A" : T{MxN}

]

A "." "elems" : T*?;

Then, the following operator _ [_ _] provides direct ac-
cess to an element Ai j :

[

"T" : type; "M" : int; "N" : int;

"A" : T{MxN}; "i" : int; "j" : int

]

A "[" i j "]" : T

{ A.elems[(i−1)*N + j] };

The definitions of A and B in the introductory example use
the following matrix “constructor” _ { _ x _ } (_):

[

"T" : type; "M" : int; "N" : int;

"elems" : T*

]

T "{" M "x" N "}" "(" elems ")" : T{MxN}

{

"A" : T{MxN}; A.elems << elems; A

};

Instead of enumerating the elements of a matrix, the fol-
lowing constructor allows to pass an operator elem _ _ that

computes them, which is sometimes more convenient to
use:

[

"T" : type; "M" : int; "N" : int;

"e" :=

["i" : int; "j" : int] "elem" i j : T

]

T "{" M "x" N "}" "(" e ")" : T{MxN}

{

"elems" : T*?; "i" : int?; "j" : int?;

for i from 1 to M do

for j from 1 to N do

elems << elems, elem i j

end

end;

T{MxN}(elems)

};

The most interesting operator is the one for multiplying
matrices A of type T{LxM} and B of type T{MxN}, yielding
a result matrix of type T{LxN}, where T, L, M, and N are de-
duced from the types of A and B. To compute an element

Cik =
M

j=1
Σ Ai j ⋅ Bjk of the result matrix C, it must be possible

to multiply the elements Ai j and Bjk of type T and to add
up the results, i. e., there must be suitable operators _ * _

and _ + _ for the type T. As explained in Sec. 3.5, these re-
strictions (basically requiring T to be a field) can be ex-
pressed by implicit parameters:

[

"T" : type;

"L" : int; "M" : int; "N" : int;

"A" : T{LxM}; "B" : T{MxN};

["x" : T; "y" : T] x "*" y : T;

["x" : T; "y" : T] x "+" y : T

]

A B : T{LxN}

{

T{LxN}(

["i" : int; "k" : int] "elem" i k : T

{

"sum" : T?;

sum << (A[i 1] * B[1 k]);

for j from 2 to M do

sum << sum + (A[i j] * B[j k])

end;

sum

}

)

};

The operator’s implementation simply calls the previously
defined constructor with an appropriate local operator
elem _ _ that computes Cik from Ai j and Bjk .

It should be noted, that several of the above operator im-
plementations explicitly use some of their deduced parame-

ters whose values are determined from the types of the in-
volved matrices.

For an application of the multiplication operator such as
A B to be type-correct, the following conditions must be ful-
filled:

• It must be possible to consistently deduce the values of
the parameters T, L, M, and N from the types of the explic-
it operands A and B, i. e., both types must be matrix types
with the same element type T; furthermore, the column
count of A must be equal to the row count of B, because
both are denoted by the same parameter M. In the specific
example, the deduced values will be float, 2, 3, and 4.

• At the point of application, there must be visible opera-
tors _ * _ and _ + _ corresponding to the operator’s im-
plicit parameters, whose parameter and result types must
all be equal to the type that has been deduced for T, i. e.,
float in the example. In fact, there are predefined oper-
ators for multiplying and adding float values that can
be used for that purpose.

4. Technology

4.1 Compiler

flexiPL programs are parsed, type-checked, and translated
to simple-minded C++ code by a compiler that is also writ-
ten in C++. Using a high-level target language is both easi-
er and more portable than generating assembler code and
allows low-level optimizations to be performed by the sub-
sequently running C++ compiler. The main reason for
choosing C++ instead of C is a more powerful standard li-
brary providing, e. g., dynamically growing vectors (used to
implement sequences) and associative maps (used to imple-
ment the lookup tables required by static operators). Both
the compiler and the target code use the Boehm-Demers-
Weiser conservative garbage collector [4] to simplify dy-
namic storage management.

4.1.1 Parser and Type Checker

Figure 1 sketches the structure of the recursive-descent
parser constituting the backbone of the compiler front-end.

Most parse functions receive as parameters the current
position in the input stream and the set of all operators that
are visible at this place. In the beginning, this is the set of
all predefined operators, which can successively be extend-
ed with user-defined operators by calls to create_oper

(cf. Sec. 2.4). On the other hand, the set of visible operators
can be locally restricted by operator-specific import and ex-
port declarations (cf. Sec. 2.2).

Because in general there might be multiple possible in-
terpretations of an input sequence, some of which might get
ruled out later for various reasons (e. g., typing errors or vi-
olation of an exclude declaration, cf. Sec. 2.1.1), most func-
tions return a set of expressions (i. e, operator applications)

constituting possible decompositions of the subsequent in-
put.

Parsing begins with the parameterless function parse_top

which in turn calls parse_all with input position 1 and
the set of predefined operators. parse_all’s job is to de-
termine and return all possible interpretations of the subse-
quent input. For that purpose, it calls parse_one once for
each visible operator, which determines and returns all pos-
sible applications of this single operator. To achieve that,
the operator’s syntax is traversed from left to right and for
each of its parts one of the functions parse_name (if the
part is a name of the operator) or parse_opnd (if it is a
placeholder for an operand) is called. parse_name simply
checks whether the operator name appears at the respective
input position after discarding white space and comments if
necessary. (That is, parse_name is actually a degenerate
scanner.) If it does not, processing of the operator in
parse_one can be aborted immediately.
parse_opnd’s job is to extend the partial expression

constructed by parse_one so far with another operand.
For that purpose, parse_all is called recursively to deter-
mine the set of basically possible operands at the respective
input position. For each expression returned by this func-
tion, the type checking function check is called to test
whether the expression’s type matches the type of the corre-
sponding explicit parameter. If this is the case, the expres-
sion is added as an operand to a copy of the partial expres-
sion. Finally, parse_opnd returns the set of all expressions
extended that way.

If parse_one has successfully parsed a complete opera-
tor application, it finally checks whether the operator’s im-
plicit parameters can be initialized with suitable visible op-
erators, again using the type checking function check. If
the type of an explicit or implicit parameter contains de-
duced parameters, their values are deduced as a side effect
during the type checks performed by this function. Finally,
if the expression is a declaration, create_oper is called to
create the operator declared by it.

Taken together, these functions implement a recursive back-
tracking algorithm that determines all possible decomposi-
tions of the input into type-correct expressions. If there is
exactly one such decomposition in the end, the input is ac-
cepted as a correct program and the back-end is called to
generate target code for it. Otherwise, the program is reject-
ed because it is either erroneous or ambiguous. The latter
might happen in particular if the precedence between oper-
ators has not been specified sufficiently.

To improve the performance of the backtracking algo-
rithm, erroneous decompositions are detected and ruled out
as soon as possible by integrating the type checker within
the parser. Furthermore, repeated calls to parse_all with
the same arguments (input position and visible operators),
which are frequently generated by the backtracking strate-
gy, are optimized by memoizing their results. By that

parse_topparse_top

parse_all

for each

visible

operator

parse_all

for each

visible

operator

parse_one

for each

part of the

operator

parse_one

for each

part of the

operator

parse_opnd

for each

resulting

expression

parse_opnd

for each

resulting

expression
either

checkcheck

parse_nameparse_name

or

create_opercreate_oper
if declaration

Explanation of the different arrows

one call

multiple callsmultiple results

one result

per call

Figure 1. Functional structure of the parser

means, the compiler’s run time usually grows only linearly
with the size of the input.

4.1.2 Error Handling

Not surprisingly, the issues of error diagnosis and recovery
are inherently difficult for a syntactically extensible pro-
gramming language. Because there is no predefined gram-
mar at all, established techniques such as resuming at par-
ticular “recovery symbols” (e. g., keywords such as else or
end) or augmenting the grammar with special “error pro-
ductions” do not work. Furthermore, if the compiler does
not find a correct interpretation of the input, it is difficult to
produce an appropriate error message, because usually sev-
eral alternatives hav e been tried where each of them might
have failed for a different reason. (This in turn complicates
error recovery, because it also has to pursue multiple alter-
natives.) On the other hand, detecting that a particular de-
composition of (a part of) the input does not work, does not
necessarily imply an error that should be diagnosed, be-
cause a different decomposition might well work.

Therefore, the currently implemented error diagnosis is
rather simple-minded: If the input cannot be decomposed
into a complete correct expression, the highest input posi-
tion up to which a successful parse of correct subexpres-
sions has been possible is printed and the parse is aborted.
Usually, this position is a good approximation of the actual
position of the first error, and with a little training a pro-
grammer can quickly identify its reason.

For future versions of the compiler, howev er, more so-
phisticated error diagnosis and recovery is highly desirable
in order to support more productive programming. A rea-
sonable strategy might be to record an appropriate error
message for each failed attempt detected in the function
parse_one. If a correct decomposition is found in the end,
these messages can simply be discarded; otherwise, it
might be reasonable to print them all, each with an identifi-

cation of the operator whose application failed and there-
fore caused the message. For error recovery, an adaptation
of the idea of recovery symbols might work: For each cur-
rently active inv ocation of parse_one, the operator sym-
bol expected after the operand currently being parsed by
parse_opnd might be used as a recovery symbol at which
the respective inv ocation of parse_one can try to continue
if parse_opnd does not return any correct operand.

If a program is ambiguous, it is even more vital to get hints
from the compiler about the cause, because otherwise it is
extremely hard to find it. Usually, a programmer is mental-
ly tied to his intended interpretation of the input and thus
hardly recognizes other possibilities. Furthermore, a “glob-
al” ambiguity of the whole program is always caused by a
“local” ambiguity of a particular subexpression that cannot
be resolved later, and finding this particular subexpression
in a large program is almost impossible without specific
help.

To assist the programmer in such cases, the compiler
produces an HTML representation of the input whose out-
line is identical to the source code. When the mouse pointer
is positioned on an operator name, the entire operator appli-
cation is highlighted by displaying the operands with alter-
nating colors, and a tool tip shows the operator’s signature
and the line number where it is declared. Furthermore, the
corresponding declaration is also highlighted with a differ-
ent color. This augmented source code representation is
useful even for a program without errors or ambiguities to
explore its logical structure and to see which operator is ap-
plied at which input position. For an ambiguous program,
all operator names belonging to ambiguous operator appli-
cations are immediately highlighted in red. When position-
ing the mouse pointer on such a name, the tool tip shows
the signatures and line numbers of all the operators that
could be applied here. Alternatively, if an ambiguity is not
caused by overloaded operator names, but by insufficient

operator precedences, the tool tip shows the different
groupings that are possible at this place.

4.2 Current Limitations

After completion of the first, albeit partially incomplete,
compiler it has been possible to gain practical experience
with using the language. Not really surprisingly, this has re-
vealed some conceptual and technical flaws which shall be
remedied in the future.

4.2.1 User-Defined Declaration Operators

The most severe limitation at the moment is the fact that
user-defined declaration operators (i. e., user-defined opera-
tors whose application causes declarations of other opera-
tors, cf. Sec. 2.4) are very restricted at the moment, because
their parameters can neither appear in the signature nor in
the parameter list of the declarations they perform. For ex-
ample, it would be desirable to define a new operator, say
_ :<< _, that combines a variable declaration with an as-
signment of its initial value, i. e., "x" :<< 1 should be
equivalent to "x" : int?; x << 1 (the type int can be de-
duced from the initial value 1). Currently, this is impossible
for two reasons: First, the names appearing in an operator’s
signature must be string literals and thus cannot depend on
parameters of the enclosing (virtual) declaration operator.
(This means that the example given in Sec. 2.4 does not
work either at the moment.) This restriction could be re-
laxed rather easily in the compiler, but the second reason is
more fundamental: If an operator’s name depends on a pa-
rameter, it is difficult to apply this operator afterwards, be-
cause its actual name is not known, for example:

["T" : type; "name" : string; "init" : T]

name ":<<" init = ...

This operator’s realization (indicated by the ellipses) could
start with the declaration name : T? that declares a variable
of type T? whose name is given by the value of the parame-
ter name. (Therefore, name is not enclosed in quotation
marks.) But afterwards it is impossible to assign to this
variable within the realization, because its actual name is
not known there. (name << init would of course not be a
correct expression, since name denotes a string instead of a
variable.)

In this particular example, it is possible to circumvent
this general problem by first defining and assigning an aux-
iliary variable with a fixed name and afterwards defining
the actually required variable as an “alias” for it (the opera-
tor use _ in _ end has been defined in Sec. 2.2;
! "x" : T? is a redeclaration that simply returns the previ-
ously declared operator x):

["T" : type; "name" : string; "init" : T]

name ":<<" init =

use

"x" : T?; x << init

in

name : T? = ! "x" : T?

end

But things get even more difficult, if the parameter list of
an operator declaration shall also depend on parameters of
the enclosing declaration operator. A typical example for
such a declaration operator is a wrapper for one of the pre-
defined declaration operators, which provides exactly the
same functionality with different syntax. It might be desir-
able, for example, to declare parameterized operators with a
new declaration operator with _ define _ : _ begin _
end that is equivalent to [_] _ : _ { _ }, e. g.:

with

"n" : int

define

n "!" : int

begin

if n > 1 then (n−1)! * n else 1 end

end

Basically, the definition of the new declaration operator
must read as follows:

[

"Pars" : type; "pars" : Pars;

"Sig" : type; "sig" : Sig;

"res" : type;

"impl" : res

]

"with" pars "define" sig ":" res

"begin" impl "end" =

[pars] sig : res { impl }

Since the actual types of the parameter list pars and the
signature sig may vary for different applications of the op-
erator, they are declared as deduced parameters of type
type. The compiler will not accept the realization of this
operator, howev er, since it does not know anything specific
about these two essential parts of the operator declared in
the realization by the predefined declaration operator [_]

_ : _ { _ }.
There are specific ideas to solve this apparently in-

tractable problem, which have to be worked out in detail.
As the previous example demonstrates, the problem has
significant practical relevance, because in a fully extensible
and customizable language it should of course be possible
to extend or customize even the syntax of the most funda-
mental predefined declaration operators in order to be able
to change the syntax that is used to define new syntax.

As another practical example, the operators defined in
Secs. 3.3 to 3.5 would be even more convenient to use if the
loop variables could be declared by the operator itself, e. g.:

for "x" in 1, 2, 3 do

print x ← use x as if it has been declared as
end "x" : int = (current iter. elem.)

However, this has non-trivial implications for the concept
of visibility rules, which must also be worked out in detail.

4.2.2 Implicit Type Conversions

Implicit type conversions (one of the special cases of multi-
part operator combinations in Sec. 2.1.2) are also rather
limited at the moment. Even though their most useful appli-
cation, i. e., the implicit conversion of a variable to its value
(cf. Sec. 2.1.3), works fine, there are other practical appli-
cations that do not work satisfactorily at the moment.

If, for example, an int value is implicitly convertible to
the corresponding float value, a simple addition of int
values might also be interpreted as the addition of the cor-
responding float values. But, of course, it seems natural
to automatically resolve this ambiguity in favor of the inte-
ger addition in that case. Therefore, it is necessary to define
general rules to automatically resolve such “artificial” am-
biguities.

As another example, if a value of some type X is implicit-
ly convertible to a sequence with type X* containing just
this value, this conversion might be applied repeatedly,
yielding a sequence of sequences with type X**, a threefold
sequence with type X***, and so on. The question when to
stop these repeated applications because they do no longer
make sense is difficult to answer in general when there are
other implicit conversions that could be applied, too.

A general algorithm to decide whether a given source
type is implicitly convertible to a target type by a finite se-
quence of individual conversions has been developed and
successfully tested with various real and artificial examples,
but before integrating it into the compiler its correctness
and termination should be formally proven.

5. Related Work

5.1 Basic Language Features

Apart from the syntactical extensibility discussed separate-
ly in Sec. 5.2, flexiPL provides several other interesting
language features, which shall be reviewed in the sequel.

Deduced parameters are well-known under different
names from many other languages, e. g., template parame-
ters in C++ and type variables in Java and Haskell. In con-
trast to these languages, however, types are first-class ob-
jects in flexiPL and deduced parameters are declared and
used just like other parameters.

Implicit parameters have also been proposed earlier, both
by the author himself [10] and others [13]. In a somewhat
different form, they can also be found in Scala [17]. As al-
ready pointed out in Secs. 3.5 and 3.6, they are not merely a
matter of convenience −− because their values need not be
given explicitly when applying an operator −−, but they are
typically employed to specify restrictions or constraints for
deduced parameters, similar to bounded polymorphism as,
e. g., in Java and type classes as, e. g., in Haskell.

The possibilities for arbitrarily nesting operator defini-
tions, where local operators can safely use more global
ones, passing operators as parameters and results of other
operators etc. are well-known as closures and higher-order
functions.

Static operators as described in Sec. 2.3.1, in particular
parameterized ones, as a means to establish immutable rela-
tionships between objects and to implicitly create the re-
quired objects on demand seem to be a new concept for a
programming language.

The approach to provide mutable storage or state as an
orthogonal concept of its own by making variable types
(T?) explicit, is also rather unusual. By omitting these types
and their accompanying operators, the language would im-
mediately turn into a purely functional one.

User-definable implicit type conversions (even generic
ones to some extent) are provided in some way or another
by several programming languages including C++, Scala,
and others, but they are not applied transitively there. Fur-
thermore, predefined and user-defined conversions are
strictly separated and subject to different rules. (For exam-
ple, conversions implied by subclass relationships are in
fact applied transitively, of course.) According to flexiPL’s
general principle “one law for all,” user-defined implicit
conversions are treated just like predefined ones, leading to
much simpler and more uniform rules for their application.

The possibility to define and use types that depend on
non-type values is known as dependent types. However, the
precise expressiveness of flexiPL’s type system and its rela-
tionship to other systems has not been investigated yet. It is
basically possible, however, to use type definitions and vir-
tual operators to encode computations that will be carried
out at compile time, similar to, e. g., template meta-
programming in C++.

5.2 Extensible Programming Languages

During the history of programming language development,
the idea of an extensible programming language has ap-
peared every now and then.

One of oldest and most well-known examples is Lisp
[18] with its different dialects and flavors. Similar to
flexiPL, Lisp does neither distinguish between operators
and functions nor between predefined and user-defined op-
erators/functions. By defining new functions −− or macros,
whose syntactic appearance is identical to that of
functions −− a programmer is actually extending the lan-
guage all the time. Another parallel to flexiPL is the fact
that language extensions are defined in the language itself,
and that a very small language core is sufficient for that
purpose. However, there are also essential differences: First
of all, Lisp does not possess a static type system. Further-
more, Lisp expressions must always be parenthesized,
which significantly restricts the possibilities for defining
new syntax. Finally, flexiPL does not have a “procedural”
macro engine, i. e., no user code will be executed at com-

pile time in order to perform syntactic transformations.
(Virtual operators are just a declarative and type-safe
“rewrite” macro system.) In summary, flexiPL has consid-
erable advantages over Lisp (complete syntactic freedom
and static type safety), while the deliberately omitted pro-
cedural macro facility has not been perceived as a major
limitation yet.

Dylan [7] is a more modern language that has been
strongly influenced by Lisp’s ideas. It also supports syntac-
tic extensibility in the language itself (actually in a rewrite
macro system which is an integral part of the language).
Even though the programmer has more freedom than with
Lisp’s simple s-expressions, there are also strict syntactic
limitations which cannot be exceeded. In contrast, the oper-
ator concept of flexiPL offers virtually unlimited syntactic
freedom. Apart from that, Dylan does not have a static type
system either.

D-Expressions [1] extend Dylan’s rewrite macro system
with a procedural macro engine that allows to use the full
expressive power of the programming language in syntax
transformations. The Java Syntactic Extender (JSE) [2] ap-
plies the same idea to the Java programming language. But
despite the unlimited expressiveness of syntax transforma-

tions, both approaches severely restrict the possibilities for
their application in the same way as Dylan does. For exam-
ple, JSE distinguishes call and statement macros, both of
which are “limited to a few contexts and shapes corre-
sponding to existing Java syntactic contexts and shapes,”
which allows the parser to perform an initial “skeletal
parse” of the input without knowing the actual set of macro
definitions. For other syntactic constructs, especially
method, field, and variable declarations, it is judged that
“it’s practically impossible to allow programmers to intro-
duce constructs of similar status in a modular way, and no
attempt is made to address this.” flexiPL, however, does in
fact address exactly this.

Maya [3] is another interesting approach to syntax exten-
sions in Java, where grammar productions are treated as
compile-time generic functions and semantic actions as cor-
responding multimethods. In contrast to flexiPL, however,
extensibility is provided as a separate add-on (called
Mayans) whose appearance (quasiquoted templates) is
rather different from that of the base language. Further-
more, Mayans have to be precompiled separately from the
applications using them. Even though the syntactic flexibil-
ity seems to be much higher than with JSE, there are still
limitations compared with flexiPL, e. g., brackets must al-
ways be balanced to allow “lazy parsing,” similar to JSE’s
“skeletal parsing.”

Many different languages, e. g., Haskell [14], Prolog [6],
and Scala [17], allow the user to extend at least the syntax
of expressions by defining new operator symbols. Since
functional languages, just as flexiPL, do not distinguish be-
tween expressions and statements, the syntax of statements
(e. g., control structures) becomes also extensible in princi-
ple. However, the syntax of types and declarations still re-

mains fixed. In flexiPL, however, the basic principle
“everything is an expression” implies that all parts of the
language can be extended simply by defining new opera-
tors.

Seed7 [15] is a rather old approach of a statically typed,
extensible programming language which is still actively
maintained, however [16]. The language is divided into two
distinct levels causing an unnatural and unnecessary breach
between “primitive actions” and special syntax declarations
on the one hand and normal operators on the other hand. In
contrast, irreducible core constructs are provided as normal
operators in flexiPL, whose usage does not differ in any
way from other operators. Furthermore, the definition of a
new operator −− which simultaneously defines a new syntac-
tic construct −− is an operator application itself. By that
means it is basically possible to extend or customize even
the syntax that is used to define new syntax.

Ganz et al. [8] provide seminal work for augmenting
functional languages with type-safe macros, which might
ev en define new binding constructs, by formally viewing
macros as multi-stage computations. To illustrate “how the
main semantic subtleties of a typed macro system can be
addressed,” (Core) MacroML is presented as an extension
of ML, that does not strive for great syntactic flexibility,
however. In fact, the addition of distfix macros as a means
for syntax customization is only mentioned briefly as a pos-
sible extension.

An approach whose basic ideas and objectives are almost
identical to that of flexiPL is “π −− a Pattern Language”
[12]. The concept called pattern there −− which is “the only
language construct in π” −− directly corresponds to an oper-
ator in flexiPL: It possesses a syntax, composed of names
(or symbols) and placeholders for operands, and an associ-
ated meaning corresponding to the implementation of a
flexiPL operator. Thus, both approaches provide the same
virtually unlimited syntactic flexibility that ultimately
stems from the lack of any predefined grammar.

A significant difference and advantage of flexiPL over π

is once again the static type system, since π is completely
dynamically typed. In fact, the endeavour to reconcile ex-
treme flexibility on the one hand with a maximum of static
checkability on the other hand has been and still is the most
ambitious challenge in the development of flexiPL.

Apart from that, flexiPL provides several other useful fa-
cilities not found in π, e. g., implicit and deduced parame-
ters (where the latter are dispensable in a dynamically
typed language) or import, export, and exclude declarations
which allow, amongst others, user-defined scoping rules
and locally confined syntax extensions.

Finally, flexiPL might also be considered an adaptive gram-
mar formalism [5, 19]. Because “everything is an expres-
sion,” there is a single non-terminal symbol X denoting ex-
pressions. Every operator declaration induces a new pro-
duction for X whose right hand side can be derived from the
operator’s signature by treating the operator’s names as ter-

minal symbols and replacing explicit parameters with the
non-terminal X. The type information associated with the
parameters and the result type of the operator can be added
as grammar attributes. Import and export declarations con-
trol the set of currently active productions, while exclude
declarations can be used to rule out some otherwise possi-
ble derivations.

6. Conclusion

MOSTflexiPL is a programming language currently under
development whose syntax can be extended and customized
by its users in a virtually unlimited way, where a rather
small number of core constructs is sufficient to support a
broad range of different programming styles. Therefore, it
can be used amongst others as an extensible general pur-
pose programming language and as a host language for
domain-specific languages. It possesses a static type system
and is translated by a compiler to C++.

The most severe limitations that shall be remedied in the
future have already been mentioned in Sec. 4.2. Other con-
ceptual improvements of the language include the support
for user-defined literals, white space, and comments, be-
cause these language features are currently hard-wired in
the language definition and the compiler. To support the
definition of advanced control structures, a general jump
mechanism is required which can be used to implement
specific statements such as break, return, and throw.
A concept for modules and separate compilation has been
designed (and therefore the term “modular” is already part
of the language’s name), but not implemented in the com-
piler yet. The issues of error diagnosis and recovery have
already been discussed in Sec. 4.1.2.

Apart from these conceptual improvements, several aspects
of the flexiPL compiler have to be enhanced, too. Amongst
others, the search for deduced parameter bindings is incom-
plete if these parameters have parameters themselves
(which is not needed very often, however) and the search
for implicit parameter bindings might run into an infinite
recursion for some “malicious” (and rather artificial) exam-
ples. Furthermore, both the performance of the compiler it-
self and that of the generated code can be improved signifi-
cantly, for example by inlining applications of frequently
used predefined operators (e. g., for arithmetic). While
some of these optimizations can be automatically per-
formed by the subsequently executed C++ compiler, others
must be done by the flexiPL compiler back-end, because,
e. g., functions that are indirectly called via function point-
ers cannot be inlined by the C++ compiler. Finally, it is
planned to develop additional compiler back-ends to sup-
port other target languages and architectures, e. g., Java
source or byte code and the LLVM compiler infrastructure.

Simultaneously, the practical experiences with flexiPL shall
be broadened, e. g., by developing more extensive operator

libraries and by employing the language in real-world pro-
gramming projects. As a long term goal, the compiler shall
ultimately be implemented in the language itself.

Acknowledgements

Marco Perazzo, Stefan Billet, and Miriam Klement have
done an excellent job in implementing major parts of the
MOSTflexiPL compiler. Sean McDirmid has provided lots
of valuable comments for improving the presentation of the
paper. Last but not least: Soli Deo Gloria!

References

[1] J. Bachrach, K. Playford: D-Expressions: Lisp Power, Dylan
Style. Technical Report, Computer Science and Artificial In-
telligence Laboratory, Massachusetts Institute of Technology,
1999.

[2] J. Bachrach, K. Playford: “The Java Syntactic Extender
(JSE).” In: Proc. 2001 ACM SIGPLAN Conf. on Object-
Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA ’01) (Tampa Bay, FL, October 2001). ACM
SIGPLAN Notices 36 (11) November 2001, 31−−42.

[3] J. Baker, W. C. Hsieh: “Maya: Multiple-Dispatch Syntax Ex-
tension in Java.” In: Proc. 2002 ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI)
(Berlin, Germany, June 2002). ACM SIGPLAN Notices 37 (5)
May 2002, 270−−281.

[4] H. Boehm, M. Weiser: “Garbage Collection in an Uncooper-
ative Environment.” Software—Practice and Experience
18 (9) September 1988, 807−−820.

[5] H. Christiansen: “A survey of adaptable grammars.” ACM
SIGPLAN Notices 25 (11) November 1990, 35−−44.

[6] W. F. Clocksin, C. S. Mellish: Programming in Prolog
(Fourth Edition). Springer-Verlag, Berlin, 1994.

[7] I. D. Craig: Programming in Dylan. Springer-Verlag, Lon-
don, 1997.

[8] S. E. Ganz, A. Sabry, W. Taha: “Macros as Multi-Stage Com-
putations: Type-Safe, Generative, Binding Macros in
MacroML.” In: Proc. Int. Conf. on Functional Programming
(Firenze, Italy, September 2001). ACM SIGPLAN Notices
36 (9) September 2001, 74−−85.

[9] C. Heinlein: “C+++: User-Defined Operator Symbols in
C++.” In: P. Dadam, M. Reichert (eds.): INFORMATIK 2004
−− Informatik verbindet. Band 2 (Beiträge der 34. Jahresta-
gung der Gesellschaft für Informatik e. V.; September 2004;
Ulm). Lecture Notes in Informatics P-51, Gesellschaft für In-
formatik e. V., Bonn, 2004, 459−−468.

[10] C. Heinlein: “Implicit and Dynamic Parameters in C++.” In:
D. Lightfoot, C. Szyperski (eds.): Modular Programming
Languages (Joint Modular Languages Conference, JMLC
2006; Oxford, England, September 2006; Proceedings). Lec-
ture Notes in Computer Science 4228, Springer-Verlag,
Berlin, 2006, 37−−56.

[11] C. Heinlein: “Open Types and Bidirectional Relationships as
an Alternative to Classes and Inheritance.” Journal of Object

Technology 6 (3) March/April 2007, 101−−151,
http://www.jot.fm/issues/issue_2007_03/article3.

[12] R. Knöll, M. Mezini: “π −− a Pattern Language.” In: Proc.
24th Ann. ACM SIGPLAN Conf. on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA
2009) (Orlando, FL, October 2009). ACM SIGPLAN Notices
44 (10) October 2009, 503−−521.

[13] J. R. Lewis, M. B. Shields, E. Meijer, J. Launchbury: “Im-
plicit Parameters: Dynamic Scoping with Static Types.” In:
Proc. 27th ACM Symp. on Principles of Programming Lan-
guages (Boston, MA, January 2000), 108−−118.

[14] S. Marlow (ed.): Haskell 2010 Language Report. HaskellWi-
ki, 2010.
http://haskell.org/definition/haskell2010.pdf

[15] T. Mertes: Definition einer erweiterbaren höheren Program-
miersprache. Dissertation, Technische Universität Wien,
1986. (in German)

[16] T. Mertes: Seed7. The Extensible Programming Language.
http://seed7.sourceforge.net (2012-07-28).

[17] M. Odersky: The Scala Language Specification (Version
2.9). Programming Methods Laboratory, Ecole Polytech-
nique Fédérale de Lausanne (EPFL), May 2011.

[18] G. L. Steele Jr.: Common Lisp: The Language (Second Edi-
tion). Digital Press, Bedford, MA, 1990.

[19] Wikipedia Contributors: Adaptive Grammar.
http://en.wikipedia.org/w/index.php?title=
Adaptive_grammar&oldid=496772431 (2012-07-28)

