
Null Values in Programming Languages

Chr istian Heinlein
Dept. of Computer Structures, University of Ulm, Germany

heinlein@infor matik.uni-ulm.de

Abstract
Even though many programming languages support a distin-
guished null or nil value for pointer or reference types to in-
dicate that a pointer or reference currently does not refer to
any object, none of these languages supports null values as a
general concept for all types of the language. This inability to
explicitly express a null or missing value raises several ques-
tions when defining the semantics of a programming lan-
guage, e. g., whether it is allowed and well-defined to use
uninitialized variables or to omit explicit return statements in
functions. Introducing null values as a general concept in
programming languages not only solves such problems in a
natural and straightforward way, but also leads to some in-
teresting and unexpected consequences with respect to the in-
terpretation of null pointers: Reading the value referenced by
a null pointer should return null, while writing to such a val-
ue should simply do nothing. Besides developing a conceptu-
al basis, the paper also presents concrete approaches to im-
plement null values in programming languages.

Ke ywords: Null values, pointers and references, dereferenc-
ing.

1. Introduction
Many programming languages support a distinguished null
or nil value for pointer or reference types to indicate that a
pointer or reference currently does not refer to any object.
Examples include NIL in Pascal [4], Modula-2 [10], and
Oberon(-2) [11], 0 (when used as a pointer value) in C and
C++ [8], and null in Java [3]. None of these (and many oth-
er) languages, however, supports null values for other types
(in particular not for basic types such as integers or charac-
ters), i. e., “values” indicating the absence of any real value.
This inability to explicitly express a null or missing value
raises several questions when defining the semantics of a
programming language, e. g., whether variables must be ex-
plicitly initialized by the programmer before they are used
(as in Java), whether the compiler or run time system pro-
vides a well-defined default value for uninitialized variables
(as for global variables in C and C++), or whether uninitial-
ized variables will have completely undefined values (as lo-
cal variables in C and C++). While none of these common al-
ternatives is completely satisfactory (cf. Sec. 2.2), defining
an uninitialized variable to simply possess no value appears
rather natural and straightforward. A similar idea can be
found in the database query language SQL [6], where data
items might be NULL to indicate a missing or unknown value.
Based on these observations, the basic proposal of this paper
is to support the concept of null or missing values for every
data type of a programming language, including basic types
such as integers or characters, user-defined record or class
types, and pointer or reference types.

After some preliminary definitions (Sec. 2.1), Sec. 2 ex-
amines the positive consequences of this approach for the

treatment of uninitialized variables (Sec. 2.2) and missing re-
turn statements (Sec. 2.3), explains how to detect (Sec. 2.4)
and use null values (Sec. 2.5), and finally explains some un-
expected consequences for dereferencing null pointers
(Sec. 2.6). Following these conceptual considerations, Sec. 3
describes general approaches to implement null values for
basic types such as floating point numbers (Sec. 3.1), integer
numbers (Sec. 3.2), and characters (Sec. 3.3), as well as
pointer types (Sec. 3.4). Based on these general ideas, Sec. 4
describes a user-level implementation of null values in C++,
i. e, an implementation that does not require any compiler
modifications. Finally, Sec. 5 concludes the paper by summa-
rizing the concept and comparing it with related work.

2. Conceptual Considerations

2.1 Preparations
Mathematically speaking, a type of a programming language
describes a set of values, e. g., the type int in C or C++ de-
scribes a particular subset of the mathematical set of integral
numbers, while a user-defined type such as Person might
describe the set of all persons used in a program. Usually, a
variable of some type represents a storage cell that is capable
to store exactly one value of its type at a time. Similarly, an
expression of some type evaluates to exactly one value of its
type (unless its evaluation is aborted, e. g., by raising an ex-
ception).

To incorporate the concept of null values, these definitions
are extended to say that a variable of some type might either
contain a particular value of that type or no value at all,
while an expression of some type evaluates to either a partic-
ular value of that type or to no value at all. In the latter cas-
es, one might also say slightly inaccurately that the variable
or expression has the value null, even though “null” is actu-
ally not a value of any type.

To giv e a visual illustration, one might think of a variable
as a box containing either a particular value or being empty.

2.2 Uninitialized Variables
The fact that a variable is explicitly capable of containing no
value at all, can be exploited in a very natural and straightfor-
ward manner to define that variables which are not explicitly
initialized by the programmer simply contain no value, i. e.,
null.

Since null is a well-defined “value,” using such a variable
results in well-defined and reproducible behaviour (cf.
Sec. 2.5), in contrast to using uninitialized local variables,
e. g., in C or C++. On the other hand, since null is actually
not a value at all, it can be distinguished from all real values
of the variable’s type (cf. Sec. 2.4), in particular from numer-
ical zeros or “null bytes” (which are actually “zero bytes”).
Using such a distinguished null value seems to be more ap-
propriate than using some arbitrary real value such as zero

for global variables in C and C++. Furthermore, allowing a
programmer to declare and use uninitialized variables and to
implicitly initialize them to null, instead of rejecting them by
the compiler (as in Java), significantly simplifies both the
definition and the implementation of the language. For in-
stance, the Java Language Specification [3] contains a whole
non-trivial chapter to precisely define the notion of “definite
assignment” needed by the compiler to reject potentially
uninitialized variables. In addition to its complexity, this ap-
proach suffers from the very practical problem that a compil-
er can only perform a conservative flow analysis of a pro-
gram, which occasionally leads to situations where a pro-
grammer knows (and could prove) that a variable will be def-
initely assigned a value before its first use, but the compiler
thinks that it might not. In particular, switch statements
without a default branch are a frequent source of annoy-
ance, since such statements usually do not cover all theoreti-
cally possible cases, even if they contain case labels for all
values occurring in practice.

To summarize, implicitly initializing a variable that is not
explicitly initialized by the programmer to no value leads to
a very simple and natural semantics in practice while avoid-
ing sophisticated yet incomplete flow analyses by a compiler.
(Nevertheless, a compiler might still use such analyses to
avoid unnecessary implicit initializations of variables which
will be definitely assigned a real value before their first use.)

2.3 Missing Return Statements
Similar problems and questions to those discussed above
arise with respect to return statements: What shall happen at
compile and/or run time, if a procedure, function, or method
(whatever terminology is used in a particular language) is de-
clared to return a value of some type, but does not contain
any or does not execute a return statement at run time?

While the compilers of many programming languages are
required (by their language definitions) to accept this (possi-
bly issuing a warning), and the behaviour at run time is com-
pletely undefined, a Java compiler again has to perform a
conservative flow analysis to guarantee that a return state-
ment will be executed under all (theoretical) circumstances.
While an undefined behaviour at run time is, of course, unde-
sirable, the Java solution is unsatisfactory, too, since again
the compiler is not able to detect all legal cases. If, for exam-
ple, the return value of a method is determined in a switch
statement with several cases, each containing an appropriate
return statement, one must frequently add a logically unnec-
essary default branch containing a dummy return statement
in order to get the program compiled without errors.

Here, the fact that an expression might explicitly possess
no value at all, can be exploited in a natural and straightfor-
ward manner to define that functions that do not explicitly re-
turn a value by executing a return statement implicitly return
no value, i. e., null. Similar to the solution for uninitialized
variables, this approach avoids the burden for the language
designer to precisely define when a sequence of statements
“can complete normally” [3]1, the burden for the compiler
(implementer) to perform the necessary flow analysis, and
the burden for the normal programmer to write some actually
1 This is in fact missing from the Java Language Specifica-
tion: While it defines the notions of “normal and abrupt com-
pletion of statements,” i. e., under which circumstances a
statement does complete normally or abruptly, it actually
does not define when a statement can complete normally.
Rules similar to those for “definite assignment” would be
necessary for that purpose.

unnecessary return statements in order to be able to success-
fully compile his programs.

Furthermore, it might be semantically useful for a function
that has been declared with a return type (other than void) to
explicitly return no value by executing a return statement
without an accompanying expression. For example, a func-
tion reading an input character might naturally return null
(instead of, e. g., −1) if it has reached the end of the input
stream, while a function searching for a character in a string
and returning its position, might naturally return null (instead
of, e. g., −1) if the character is not present. Similarly, a func-
tion returning the character at a specified position of a string,
might return null (instead of throwing, e. g., an IndexOut-
OfBoundsException) if the position is invalid, while a
function returning the first element of a container might re-
turn null (instead of throwing a NoSuchElementExcep-
tion) if the container is empty (cf. Sec. 2.6).

2.4 Detecting Null Values
If variables and expressions might possess no value, it is nec-
essary for a programmer to check for this exceptional case.
Syntactically, one might think of various different possibili-
ties to perform such a test, e. g., using standard comparison
operators such as == or != to compare a value with an explic-
it null value (as in Java), using special is null or is not
null constructs (as in SQL), or to implicitly convert expres-
sions of any type to Boolean values where appropriate by in-
terpreting all real values as true and null as false (as with
pointers in C and C++).

The latter approach reflects the fact that a variable or ex-
pression of some type T might conceptually be viewed as a
pair consisting of a Boolean indicator and an actual value of
type T that is meaningful only if the indicator’s value is
true. In this interpretation, the conversion of any value to a
Boolean value simply returns the value of the indicator.

When using this approach, variables and expressions of
any type might be used as conditions of conditional and repe-
tition statements, which is rather convenient in practice. In
contrast to C and C++, however, a numerical value of zero is
treated just like any other real value, i. e., its conversion to a
Boolean value yields true.

As a consequence of interpreting all real values of a type
as true and null as false, it turns out that true is the only
“real” value of the Boolean type bool or boolean, while
false is actually equivalent to null. In particular, the famil-
iar two-valued Boolean algebra is preserved instead of intro-
ducing an unusual logical calculus based on three truth val-
ues true, false, and null resp. unknown, as in SQL [6]
(cf. Sec. 5).

2.5 Properties of Null Values
In order to be maximally useful, it should be possible to use
null values much like ordinary values without losing their
distinguished meaning, however. This means in particular,
that null values are propagated through all kinds of arith-
metic operations (including bit operations such as shift or bit-
wise complement), i. e., the value of an arithmetic expression
is null if one of its operands is null. This is very similar to the
behaviour of NaN (not a number) values defined by IEEE
floating point arithmetics [2].

Furthermore, a null value is different from and incompara-
ble to any real value of some type, i. e., comparing a real
value x with null using any of the standard comparison oper-
ators (==, <, >, <=, and >=) always returns false, while x !=

null returns true. The former is a little bit unusual, since,
e. g., x < y and x >= y will both be false if one of the
operands is null. It should be noted, however, that this is not
a contradiction to the well-established two-valued Boolean
algebra, but simply a result of the rather obvious fact that a
null value is neither equal to nor smaller than nor larger than
any real value. (In a partially ordered set, x < y and x >= y
might also be both false.)

In contrast to NaN floating point values, which exhibit the
rather strange behaviour that NaN is different from NaN
(which might be explained by the fact that NaN values might
have many different causes), null is considered equal to null,
i. e., null == null yields true.

2.6 Dereferencing Null Pointers
As has been mentioned in Sec. 1, null values for pointer (or
reference) types are very common in programming lan-
guages. Since such a pointer value does not refer to any ob-
ject, dereferencing it usually leads to a run time error, such as
a SIGSEGV (segmentation violation) signal or a NullPoint-
erException in Java. Howev er, giv en the fact that an ex-
pression might have no value, it is also possible −− and in fact
more reasonable and consistent, even though it might appear
strange at first sight −− to define that dereferencing a null
pointer simply returns no value, i. e., null. For example, if an
int pointer p in C or C++ is null, the dereferencing opera-
tion *p should return null, too, instead of causing a SIGSEGV.
To giv e another example, if a Person variable p in Java is
null, requesting its name p.name −− which is actually a com-
bination of a dereferencing and a field selection operation −−
should also return null instead of throwing a NullPoint-
erException.

For the same reason, one might argue that accessing a non-
existent array (or other container) element need (and should)
not cause an error such as an IndexOutOfBoundsExcep-
tion, but rather should return no value, i. e., null.

After a short time of familiarization, these alternative rules
turn out to be quite convenient in practice, because they make
many explicit checks superfluous. If, for example, a Java
class Person contains fields name of type String and
spouse of type Person, one might test, e. g., whether the
fifth character in the name of p’s spouse is ’a’ simply by
writing the condition if (p.spouse.name.charAt(4) ==
’a’), implying the checks that p actually references a person
(p != null), that this person actually has a spouse
(p.spouse != null), that the spouse actually has a name
(p.spouse.name != null), and that this name has at least
five characters (p.spouse.name.length() > 4). If any of
these implied conditions (which are usually omitted in collo-
quial language, too) does not hold, the subexpression
p.spouse.name.charAt(4) simply returns null which is
different from ’a’.2

Furthermore, these alternative rules might lead to more ro-
bust programs, since unusual circumstances which have not
been anticipated by a programmer and therefore are not ex-
plicitly checked (e. g., a person without a name) will not lead
to run time errors or program crashes, but in many cases sim-
ply to unsatisfied conditions (as in the example above) caus-
ing correct program continuation. (Of course, one might ar-
gue that the opposite might also happen in practice, i. e., that
2 In Java, one might achieve a similar effect by misusing its
exception mechanism: If the simple test is enclosed in a try
statement that catches NullPointerExceptions and In-
dexOutOfBoundsExceptions, the explicit checks could be
omitted, too.

real programming errors will not lead to a “fail fast” be-
haviour, but to an incorrect program continuation. Empirical
studies would be necessary to assess the probabilities of both
cases more precisely.)

If “reading” the value or object referenced by a null pointer
does no longer cause a run time error, but exhibits a well-
defined behaviour, the question arises whether “writing” to
such a value or object (e. g., by assigning a value to a derefer-
enced null pointer) should still cause an error or whether it is
possible to define a meaningful behaviour for that case, too.

When thinking of a null pointer as pointing to “nowhere,”
a value written to this “place” should simply disappear with-
out trace, i. e., such an operation should simply do nothing.
Such a behaviour is very similar to that of the Unix pseudo
file /dev/null: While reading from this device always re-
turns null/nothing (i. e., end of file), writing to it simply has
no effect. And just like using this device as a data sink turns
out to be quite useful in some circumstances (e. g., to fade
out the output produced by a program), it might be useful in
some circumstances, too, to write to a dereferenced null
pointer.

For example, if a function in C shall return multiple val-
ues, at most one of them can be returned directly as the func-
tion’s result, while the others must be conveyed indirectly
through variables whose addresses have been passed as argu-
ments. If some of these values are only meaningful to partic-
ular clients, other clients might simply want to pass null
pointers instead of valid addresses to indicate that they are
not interested in the corresponding values. In normal C code,
where this technique is rather popular, the implementer of
such a function must explicitly check each pointer for not be-
ing null before dereferencing it and assigning a value to its
target. Given the modified definition above, howev er, real
and null pointers can be treated uniformly, without any need
for explicit checks. Again, this might lead to more robust and
flexible code, since it allows to pass null pointers even to
functions whose implementers have not taken their possibili-
ty into account.

Finally, the question remains whether it is possible to reason-
ably define the case of calling a (dynamically bound) method
via a null pointer. Since there is actually no target object of
the method call, it is impossible to determine the actual
method implementation that shall be executed using normal
dynamic scheduling (e. g., via virtual function tables). Since,
consequently, there is actually no method to execute, the
method call should again simply do nothing, i. e., behave like
executing an empty method. Furthermore, since an empty
method does not contain a return statement and therefore re-
turns nothing (cf. Sec. 2.3), the result of such a method call
should be null.

3. General Implementation Approaches
Having laid the conceptual basis for null values as a general
concept in programming languages, the current section pre-
sents general approaches to implement the concept for differ-
ent kinds of data types typically occurring in programming
languages.

3.1 Floating Point Types
Since the NaN values of IEEE floating point arithmetics [2]
exhibit almost the same behaviour as a null or missing value
as proposed in this paper −− in particular, they are propagated
through all arithmetic operations −−, it is straightforward as

well as maximally time- and space-efficient to implement
null floating point values as NaN values. The only operators
which have to be modified are the comparisons ==, <=, >=,
and !=, since null should be equal to null (cf. Sec. 2.5) while
NaN is always different from NaN.

3.2 Integer Types
To implement integer types with null values, there are several
alternatives with different run time and storage overheads.

The most space-efficient solution would be to exclude a
particular value of the type (e. g., the smallest available inte-
ger value) from the set of regular values and use it to repre-
sent a null resp. missing value. While this solution does not
require any additional storage, it incurs substantial run time
overhead since every arithmetic operation on the type has to
check its operands for this special null value before perform-
ing the real operation and to return the null value if at least
one of the operands is equal to it. Similarly, every compari-
son operation has to check its operands before performing
the real comparison.

Alternatively, a value of a type might be represented as a pair
consisting of a Boolean indicator and a “real value” of the
type, where the indicator is used to distinguish real from null
values: If it is false, the “compound value” is interpreted as
null, actually ignoring the real value, while otherwise the real
value is used.

To perform arithmetic operations on such compound val-
ues, the real operation is simply performed on the real values,
while the indicators are combined by a logical AND opera-
tion, without the necessity to perform any additional checks.
To be most space-efficient, the indicator could be represented
as a single bit which is “stolen” from the regular representa-
tion of the type (reducing, e. g., 32 to 31 bit integer values,
which is irrelevant for most practical applications). Ideally,
the compound arithmetic operation described above (e. g., the
normal arithmetic operation on the 31 numerical bits plus the
logical AND operation on the indicator bit) should be per-
formed by a single tailored hardware instruction to avoid any
run time overhead. Since off-the-shelf processors do not sup-
port such operations, however, it is usually necessary to im-
plement them in software. In that case, the space-efficient
representation of the indicator as a single bit turns out to
cause rather high run time overhead since additional bit oper-
ations are required to split the compound operands into real
values and indicator bits as well as to combine the resulting
real value and indicator bit into a compound result.

A third alternative, which might look strange at first glance,
but turns out to be a reasonable tradeoff in practice, is to rep-
resent integer values as corresponding floating point values
and null as NaN (cf. Sec. 3.1). Using, e. g., 32 bit IEEE float-
ing point values allows to represent 24 bit integer values
without loss of information, which is sufficient for most prac-
tical applications. Depending on the processor architecture,
performing a single floating point operation might be as fast
as or even faster than performing an integer operation plus a
logical operation as described before.

3.3 Character Types
If character types are not used as synonyms for byte (which
might possess any value from 0 to 255), but rather represent
real character values, the first solution described above for
integer types appears to be most appropriate: A particular
value (e. g., 128) that does not represent a real character of

the underlying character set can be used to represent a null or
missing value.

Since arithmetic operations on character values are rather
rare (if supported at all), the efficiency argument mentioned
above does not hold here. On the other hand, comparisons for
(un)equality are maximally simple and efficient since they
simply have to perform a bitwise comparison. Other compar-
isons, which are partially artificial since, e. g., a digit and a
letter are actually incomparable, could be supported by
checking both operands for null before performing a numeric
comparison.

3.4 Pointer Types
Since every programming language that supports pointer (or
reference) types also supports the notion of null pointers, no
additional implementation effort seems to be necessary for
these types. However, the unusual behaviour mentioned in
Sec. 2.6 of dereferencing a null pointer requires some modifi-
cations to standard implementations: If a null pointer is rep-
resented as address zero (or any other illegal address), read-
ing a value from this address must be treated differently from
reading a value from a legal address in order to avoid a seg-
mentation fault or similar error. Instead, a null value (of the
pointer’s target type) must be returned in that case. Similarly,
writing to this particular address must be explicitly avoided.
Finally, calling a method via this address must not execute
any method at all, but rather return a null value (of the
method’s result type).

Furthermore, adding the offset of a record field to the ad-
dress representing null pointers should have no effect, too,
i. e., return the same address, since accessing a field of a
record referenced by a pointer is a dereferencing operation,
too, that should exhibit the same behaviour with respect to
null pointers as other dereferencing operations.

4. User-Level Implementation in C++
Having sketched general implementation approaches for
types with null values in the previous section, the current sec-
tion presents a prototypical user-level implementation in
C++, i. e., an implementation that does not require any com-
piler modifications. Therefore, this implementation can be
used to experiment and gain experience with the concepts
outlined in Sec. 2 with rather little effort. For that purpose,
the fact that this implementation is not maximally efficient
and even the fact that some parts are not 100% portable is
deemed less important.

4.1 Basic Types
The basic idea is to provide and use wrapper types for all
C++ basic types, e. g., integer for int, character for
char, etc., and to provide overloaded definitions of all built-
in operators (such as +, −, etc.) for these wrapper types. Fur-
thermore, implicit conversions between a wrapper type and
its corresponding basic type are defined to allow, e. g., int
literals to be used as integer values. Finally, implicit con-
versions between different wrapper types reflecting the corre-
sponding conversions between their base types are defined.

By defining a parameter-less constructor for each wrapper
type that initializes its object as null, variables of that type
which are not explicitly initialized will get implicitly initial-
ized with null by this constructor [8]. To test for null values,
a conversion operator to the basic type bool is provided that
returns true for real values and false for null.

Figure 1 shows the basic skeleton of such a wrapper type
and the accompanying operator definitions using integer as
an example.

// Wrapper type for int.
struct integer {
// Internal representation.
float val;

// Null value representation as NaN.
static const float null = 0/0;

// Default initialization as null.
integer () : val(null) {}

// Implicit conversion from int value.
integer (int i) : val(i) {}

// Implicit conversion to bool.
operator bool () const {
// Return true if val is not NaN.
return !isnan(val);

}

// Explicit construction from float value
// (needed by operator implementations).
explicit integer (float f) : val(f) {}

// Copy constructor catching read access
// to dereferenced null pointers.
integer (const integer& i)
: val(&i ? i.val : null) {}

// Assignment operator catching read
// and write access to dereferenced
// null pointers.
integer& operator= (const integer& i) {
if (this) val = &i ? i.val : null;
return *this;

}
};

// Arithmetic operations.
integer operator+ (integer x, integer y) {
return integer(x.val + y.val);

}
integer operator− (integer x, integer y) {
return integer(x.val − y.val);

}
......

// Comparison operations.
bool operator< (integer x, integer y) {
return x.val < y.val;

}
bool operator== (integer x, integer y) {
// Return true, if float values are equal
// or both values are NaN.
return x.val == y.val
|| (isnan(x.val) && isnan(y.val));

}
......

Figure 1: Wrapper type integer for int

To implement the unusual behaviour of dereferencing null
pointers described in Sec. 2.6, a copy constructor is provided
that is implicitly called whenever an integer object is
copied, i. e., read. Since it receives a reference i (of type
const integer&) to the source object, it is able to deter-
mine its address &i (of type const integer*) and check

whether it is a null pointer, before accessing its internal rep-
resentation i.val, i. e., before actually performing the deref-
erencing operation. If the pointer is null, a null object is con-
structed and returned and the dereferencing operation (which
would cause the program to crash) is avoided.

Similarly, an overloaded assignment operator is provided
that is implicitly called whenever an integer object is as-
signed a new value, i. e., is written. Like the copy constructor
mentioned before, it receives a reference i to the source ob-
ject (i. e, the RHS of the assignment), while the implicit pa-
rameter this (of type integer*) represents a pointer to the
target object (i. e, the LHS of the assignment). Therefore, it is
possible to check whether this is a null pointer, before ac-
cessing its internal representation val, i. e., before actually
performing the dereferencing operation on the LHS. If the
pointer is null, the assignment operator simply does nothing.
Since the RHS might be a dereferenced null pointer, too, the
same check as in the copy constructor is used here, too, if an
assignment is actually performed.

These definitions cause code such as:

integer* p = 0;
integer i = *p;
*p = 5;

which would normally crash to behave well-defined, i. e., the
initialization of i with the dereferenced null pointer *p pro-
duces a null integer value, while the assignment to the
dereferenced null pointer *p simply does nothing.

To support not only direct dereferencing operations using
the * operator, but also those using the −> operator (e. g.,
p−>x where p is a pointer to a structure possessing an
element x), pointer values resulting from incrementing a null
pointer by an offset of such an element should be treated like
null pointers, too. If null pointers are represented as address
zero (which is common), the resulting pointers have “small”
values when interpreted as integer values, where the precise
definition of “small” is “less than the size S of the largest da-
ta type appearing in a program.” Therefore, checks such as
if (this) must be replaced by if (this > S). Since such
“small” addresses do not occur as real addresses of data in
typical environments (since the program’s code resides at
these addresses), treating them like null pointers does not
cause any trouble in practice.3

It should be noted, however, that dereferencing null point-
ers behaves only well-defined if the target type of the derefer-
encing operator is “null-aware,” i. e., possesses a copy con-
structor and assignment operator as described above.

4.2 Pointer Types
If a null pointer to another pointer (or a null pointer to a data
structure containing pointers) should be safely dereferenca-
ble, pointer types themselves must be null-aware, i. e., pos-
sess appropriate copy constructors and assignment operators.
This can be achieved by providing and using a generic wrap-
per type pointer<T> for the basic pointer types T* (cf.
Fig. 2).

4.3 User-Defined Types
If a programmer defines a new class (or structure), it possess-
es an implicitly defined default constructor, copy constructor,

3 Strictly speaking, of course, assumptions such as null point-
ers are represented as address zero and “small” addresses do
not occur as real addresses of data, are implementation-
dependent and not portable.

template <typename T>
struct pointer {
// Internal representation.
T* ptr;

// Null value representation.
static const int null = 0;

// Default initialization as null.
pointer () : ptr(null) {}

// Implicit conversion from real pointer.
pointer (T* p) : ptr(p) {}

// Implicit conversion to bool.
operator bool () const { return ptr; }

// Copy constructor catching read access
// to dereferenced null pointers.
pointer (const pointer& p)
: ptr(&p ? p.ptr : null) {}

// Assignment operator catching read
// and write access to dereferenced
// null pointers.
pointer& operator= (const pointer& p) {
if (this) ptr = &p ? p.ptr : null;
return *this;

}

// Dereferencing operators.
T& operator* () { return *ptr; }
const T& operator* () const {
return *ptr;

}
T* operator−> () { return ptr; }
const T* operator−> () const {
return ptr;

}
};

Figure 2: Generic wrapper type pointer<T> for T*

and assignment operator, which simply call the correspond-
ing functions for all components (i. e., base classes, if any,
and data elements) of the new type (cf. [8]). Therefore, if all
components of the type are null-aware, the new type is auto-
matically null-aware, too, i. e., variables of this type which
are not explicitly initialized will be implicitly initialized as
null (by initializing all components as null) and dereferenc-
ing null pointers to this type will be well-defined.

The only function that has to be provided explicitly, is an
appropriate conversion operator to bool. Typically, this
checks some or all components of the type for being null and
combines the results by a logical AND or OR operation, de-
pending on the particular semantics of the type. For example,
a Person object might be considered null if an essential
component such as name is null, while other components
such as spouse will not be taken into account. On the other
hand, a Rectangle object possessing width and height
components might be considered null if at least one of its
components is null.

If the class possesses virtual member functions (i. e., dynami-
cally bound methods), these must be wrapped by non-virtual
functions (i. e., statically bound methods), since the former
cannot be called via null pointers. Such a non-virtual wrapper
function must check whether this is null and either return
null (if it is) or call the corresponding virtual function. If the
wrapper function possesses the same name as the original
virtual function and the latter is renamed to some unique in-

ternal name, the presence of the wrapper function remains
transparent for clients calling the function. Furthermore, it is
possible to create the wrapper function automatically by a
precompiler in order to completely hide its presence from
programmers.

To giv e a simple example of a user-defined type, Fig. 3
shows the definition of struct Rectangle possessing two
integer components width and height. As described
above, the conversion operator to bool returns true if both
components are not null. Conceptually, the type possesses a
virtual member function area to compute the rectangle’s
area. To catch calls of this function via null pointers, howev-
er, it has been renamed to area__ and replaced by a non-
virtual wrapper function area that checks whether this is
null before calling area__. If it is null, a null integer value
(created by calling integer’s default constructor) is re-
turned instead. (This is explicitly necessary, since C++ does
not implement the rule postulated in Sec. 2.3 that a function
that does not explicitly return a value implicitly returns null.
However, it could be implemented rather easily by a precom-
piler, too.)

struct Rectangle {
// Components.
integer width, height;

// Implicit conversion to bool.
operator bool () {

// Return true if both components
// are not null.
return width && height;

}

// Virtual member function computing area.
virtual integer area__ () {

return width * height;
}

// Non−virtual wrapper function
// catching dereferenced null pointers.
integer area () {

if (this) return area__();
else return integer();

}
};

Figure 3: Simple example of a user-defined type

If a subclass of Rectangle shall override the member
function area, it actually must provide a redefinition of
area__. Again, this renaming might be performed by a pre-
compiler.

5. Conclusion
Even though programming languages offering pointers or
references provide the notion of a null pointer or reference,
they usually lack the concept of general null resp. missing
values for all types of the language. Starting with the obser-
vation that such a concept would make some aspects of a lan-
guage more convenient and reliable −− variables which are not
explicitly initialized are initialized to null and functions
which do not explicitly return a value return null −−, its strict
application led to some interesting and unexpected conse-
quences with respect to the interpretation of null pointers:
Reading the value referenced by a null pointer should return
null, while writing to such a value should simply do nothing.
Again, this makes programming both more convenient (since

many explicit checks for null pointers become obsolete) and
more reliable (since omitted checks will not lead to run time
errors).

Some of the ideas presented in this paper can be found in ex-
isting languages, too, in particular in various scripting lan-
guages. For example, variables which are not explicitly ini-
tialized are usually initialized to a well-defined default value
in these languages instead of leaving their value undefined or
random (as, e. g., in C and C++). Similarly, functions which
are not explicitly returning a value usually return a well-
defined default value, too.

While in some languages (e. g., Awk [1] and Perl [9]), this
default value is a regular value such as zero or an empty
string, others provide a distinguished value such as nil (e. g.,
Lisp [7]) or None (e. g., Python [5]) that is different from all
real values. In contrast to the null values proposed in this pa-
per, howev er, which can be used just like regular values in
operations such as arithmetics and comparisons, these distin-
guished values usually cause run time errors when used that
way. The NaN values of IEEE floating point arithmetics [2]
are an exception that demonstrates the usefulness of propa-
gating null values through arithmetic operations.

Another exception are NULL values in relational database
systems and their treatment in the query language SQL [6].
While their behaviour in arithmetic expressions is identical to
that proposed in this paper, their interpretation in Boolean ex-
pressions and comparisons differs substantially. Based on the
general view that a NULL value represents an unknown (rather
than a missing) value, it is consistent to define the result of
comparing a regular value with NULL as unknown (rather
then false), too, and consequently also to define the value
of a Boolean expression containing one or more operands
with unknown values as unknown.

In contrast, a null value as proposed in this paper actually
denotes no value at all (causing the notion of “null value” to
be actually a contradiction in itself). Based on this view, it is
reasonable to define that null is definitely different from and
incomparable to all real values, i. e., corresponding compar-
isons simply return false instead of an unknown Boolean
value. An important side effect of this decision is the fact that
the well-known and familiar two-valued Boolean algebra is
still applicable, i. e., the rather strange and unusual three-
valued logic of SQL can be avoided.

References
[1] A. V. Aho, B. W. Kernighan, P. J. Weinberger: “Awk −− A
Pattern Scanning and Processing Language.” Software—
Practice and Experience 9 (4) April 1979, 267−−279.

[2] D. Goldberg: “What Every Computer Scientist Should
Know About Floating-Point Arithmetic.” ACM Computing
Surveys 23 (1) March 1991, 5−−48.

[3] J. Gosling, B. Joy, G. Steele: The Java Language Specifi-
cation. Addison-Wesley, Reading, MA, 1996.

[4] K. Jensen, N. Wirth: Pascal User Manual and Report
(Second Edition). Springer-Verlag, New York, 1978.

[5] M. Lutz: Programming Python. O’Reilly, Beijing, 2001.

[6] J. Melton, A. R. Simon: SQL:1999. Understanding Rela-
tional Language Components. Morgan Kaufmann Publishers,
San Francisco, CA, 2002.

[7] G. L. Steele Jr.: Common Lisp: The Language (Second
Edition). Digital Press, Bedford, MA, 1990.

[8] B. Stroustrup: The C++ Programming Language (Spe-
cial Edition). Addison-Wesley, Reading, MA, 2000.

[9] L. Wall, T. Christiansen, J. Orwant: Programming Perl
(3rd Edition). O’Reilly, 2000.

[10] N. Wirth: Programming in Modula-2. Springer-Verlag,
1982.

[11] N. Wirth: “The Programming Language Oberon.” Soft-
ware—Practice and Experience 18 (7) July 1988, 671−−690.

