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Abstract. Qualifying types represent a new approac to modifying the behav-
iour of instances of other types in a genera way, in the form of comporents
which can be designed ad implemented without a prior knowledgeof the types
to be modified or their implementations. This paper ill ustrates the idea by
showing hav they can be used to program various standard synchronisation
problems, including mutua exclusion, reader-writer synchronisation and sev-
eral variants of the bounded buffer problem.

1 Introduction

Advocdes of asped oriented programming (AOP) [11] rightly emphasise that much
can be gained by separating different aspeds of progammed gplicaions. The dmin
AOP is to separate the descriptions of various aspeds of a software system such as
classhierarchies, functionality and synchronisation [7] in order to increase readability
and fadlitate changes. These separate descriptions are then combined by an "asped
weaver" into a standard progamming languag representation.

The language AspedJ [12] can be mnsidered as an asped weaver for Java. This aup-
ports various constructs (e.g. "pointcuts’ for before- and after-"advice', "introduction”
for adding methods, wild cards which all ow method names to be grouped, etc.) which
alow programmers to define aspeds as sparate textual units that can then be gplied
to aJava classto produce a rew classwhich contains the required asped.

An approach which modifies Java programs at the source level inevitably has ssme
disadvantages, espedally with resped to aspeds which have awide general applica
tion, such as g/nchronisation, protedion a monitoring. Here the ided would be to
define one or more aspeds as completely independent modues withou them neading
to have knowledge of the dasses which they might qualify, and then simply apply
them to these classes (or even individual objeds) as required. To take asimple exam-
ple, an asped such as "realer-writer synchronisation” might have an implementation
which uses the following pattern (usng the reader priority algorithm from [4]):

/1 the data structures

Sermaphore nut ex = new Senaphore(1);
Semaphor e reader Excl usi on = new Semaphore(1);
int readcount = 0;



/1 the witer synchronisation pattern

mut ex. p();

--- call the witer nmethod to be synchronised ---
mut ex. v();

/1 the reader synchronisation pattern
reader Excl usi on. p(); readcount++; if (readcount == 1) nutex.p();
reader Excl usi on. v();
--- call the reader nethod to be synchronised ---
reader Excl usi on. p(); readcount--; if (readcount == 0) nutex.v();
reader Excl usi on. v();

Java and aher standard OOP languages have no mechanism all owing such a general
pattern to be defined and implemented orce & an independent unit and then applied
to any class or objead which neals to be synchronised. Consequently any asped
weaver which compil es to such target languags must facesome sulstantial problems.
Regardlessof the technique used (e.g. ssimply modifying the source codeof individual
classes, defining subclasses which implement the asped) ead existing classmust be
considered separately. It must be dea which methods are realers, which are writers,
how to hande pubic fields, how to handle static mambers, etc. An asped of this kind
can be written orly if the target classes have been designed acording to some specid
rules (e.g. writer methods begin with "set", reader methods with "get", there must be
no puwlic fields and no static members). And since using Java ultimately involves
modifying the methods of the target class the modificaion haes a static character (e.g.
all instances of the target classare reader-writer synchronised, etc.).

Thus it is not possble simply to define ageneral comporent and apply it (together
with ather similar comporents) in a straightforward manner to oljeds as they are
dynamicdly creaed. Y et the requirement is both simple and relevant. The example of
synchronisation is not an exceptional case. Another significant example is the neal to
control accessto oljeds, e.g. by dyramicdly cheding whether the dient islisted on
an accesscontrol list (ACL) or whether he can suppy a passwvord, whether the expiry
date for atrial use of an oljed has expired, etc. Then there is the isue of monitoring,
i.e. maintaining relevant information abou accessto oljeds, e.g. for debuggng, for
deteding hadkers, etc. A more alvanced applicaion for such general purpose mod-
ulesisatransadion mechanism.

The dam of qualifying typesis to provide just such a mechanism, which alows pro-
grammers to define and implement general purpose comporents that can qualify the
behaviour of objeds withou having a spedal knowledge of their interfaces nor their
implementations. However, for reasons hinted at abowve, such a medchanism canna be
simply added to conventional OOP languages. To make it work, the language must
include some spedal fedures. In the next sedion we briefly outline how these fea-
tures are provided in the language Timor which is currently being designed at the
University of UIm[9, 10].

2 TheTimor Language

Timor can be viewed as an oljed oriented programming language which, although
based syntadicdly onJava ad C++, bregks with some fundamental concepts of OOP
in order to provide abetter suppat for the ideaof developing separate cmmponrents
(including, but not only, qualifying types) in such a way that these can be eaily
mixed and matched with ead other to produce new apgdicaion systems.



The first major difference from standard OOP is that the dassconcept is abandored
in favour of a separation d types and their implementations (which are not types),
thus alowing a type to have multiple implementations. This feaure of Timor is de-
scribed in more detail in[9].
Types are defined acording to the information hiding principle [18]. A key require-
ment for suppating qualifying types is that the programmer must designate the in-
stance methods of any type éther as op methods, i.e. operations which can modify the
state of the instance, or as enq methods, i.e. enquiries which can accessbut not mod-
ify the state of an instance (cf. e.g. methods dedared const in C++). Thus for syn-
chronisation and aher purposes (e.g. protedion, transadion management) the in-
stance methods of atype are automatically classfied asreaders or writers.
For programming convenience, a type definition can also include members resem-
bling fields or referencesl. However, such pullic members are abstract variables,
which formally correspondto a pair of instance methods, i.e. an op for setting avalue
or reference and an enq for getting a value or reference Hence dient accesss to
abstrad variables can be treatd from the viewpoint of synchronisation, etc. like other
instance methodk.
A type can have zeo or more (named) constructors, introduced by the keyword
maker 2. |t can also have methods introduced by the keyword bi nary. These ae in-
tended to allow multiple instances of the type, passed as parameters, to be manipu-
lated (e.g. compared). Under normal circumstances binary methods can orly access
these instances via their instance methods. Other forms of static methods (and fields)
are not suppated in Timor, but the dfeds of these can be athieved in ather ways.
Hereis an example of atype which will be used in later examples:
type Thing {

At ype anAbstract Vari abl e;

Thi ng* anAbstract Ref erence;

op voi d doSoret hi ng(int x);

op int doSonethi ngEl se(int y);

enqg int get Somet hing();

enq i nt get Soret hi ngEl se();

bi nary bool ean equal (Thing t1, t2);

}

Separating types and implementations leads to a separation o subtyping and code re-
use (which includes, but is no longer limited to, subclassng), described in [9]. Timor
suppats both multiple type inheritance and multiple mde re-use, as is partly ill us-
trated in [10Q].

3 Qualifying Types and Bracket Routines

A qualifying type is a normal Timor type which has the alditional property that its
instances can be used to qualify theinstances of other types. Qualificaionisameda
nism not found in the conventional OOP paradigm, athoughit has smilarities to

1 A reference defines a logical relationship between objeds. It is not a physicd
pointer. It cannot be diredly manipulated, and indiredion (i.e. references to refer-
ences) is not supported.

2 Where appropriatethe compil er adds a parameterlessmaker with the namei ni t .



some techniques discussed in sedion 8 The basic ideais that when a dient invokes
an instance method d some target objed, a speda method d a qualifying type
(known as a bracket routine) can be cheduled inits place This can, but need not, use
a speda method name body to invoke the intended instance method d the target
objed. Thisnationisill ustrated in Figure 1.

method R
Client invoceion Target
ingance T method ( ingance
D return

Fig. 1 (a): A Client invokesan Unqualified Target

prelude;
body(...);
postiude;
(Bradket)

—
Qualifying
ingance

Fig. 1 (b): A Client invokesa Qudlified Target

This property isrefleded in thetype definitionby aqual i fi es clause, e.g.
type Mutex qualifies any
augnenting {
op bracket op(...); // a bracket routine for synchronising ops
op bracket enq(...);// a bracket routine for synchronising engs
}

{/* in this exanple there are no "normal" instance nethods, etc. */}
The keyword any indicaes that instances of this type can qualify instances of any
other type. The augnent i ng clause lists the bradket routines of the qualifying type3. In
this case the bradet routines can qualify op and/or enq methods, as in the example.
Bradket routines are themselves classfied as op or enq, depending whether they mod-
ify or simply real the instance data of the qualifying instance (This alows qualifying
instances themselves to be qualified.)

Hereis an implementation of the type Mt ex:

impl Miutexl of Mitex {
Semaphore mutex = Semaphore.init(1l);//a senphore is initialised to 1
op bracket op(...) { // the code for handling ops (witers)
mutex. p(); try {return body(...);} finally {nmutex.v();}

op bracket enqg(...) { // the code for handling engs (readers)
mutex.p(); try {return body(...);} finally{nutex.v();}

}
The invocaion body(. . .)indicaes at what paoint in the mde the target method in-
voked by the dient (or in cases of multiple qudification, possbly a further bracket

3 The keyword augrent i ng indicates that the bradket routines unconditionally add
to the behaviour of qualified methods, i.e. they add a prelude and/or a postlude
and unconditionally invoke the target method. Alternative keywords repl aci ng
and testi ng indicate that the target method is not invoked at all, or that it isin-
voked conditionaly (e.g. after testing some protedion conditi on).



routine) is cdled. In general bradet routines (i.e. those which qualify any) the adual
parameter list is not known and therefore caana be modified in the bradcet routine;
the notation (. . .) indicaes in this context that the parameters supdied by the dient
are passed on unchanged.
Thetry/final Iy construct is used in this example to ensure that if the target routine
terminates abnarmally the semaphare will neverthelessbe released.
Creding a mutually exclusive Thi ng requires an instance of the type Thi ng and an
instance of the type mut ex. The relationship between themcanbe setup as follows:

Mit ex exclusive = Mutex.init();

Thing t = exclusive Thing.init();
In the second line aqualifying expresson (here the variable excl usi ve) is asociated
with the aedion d an instance of a (qualified) type. Hencein the éove example the
new Thi ng t isasciated with an existing instance of a qualifying type.
There isan aternative way of associating a Mt ex instancewith a Thi ng instance

Thing t = Mutex.init() Thing.init();
In this case the qualifying expresson returns a new (anonymous) instance of mut ex.
In either case, theclient of t accessesit asif it were not qualified, e.g.

t . doSonet hi ng();
Indeed he might not know that it is qualified (e.q. if it recaves this as a parameter of
type Thi ng). In the cae of synchronisation the anonymous form is often useful. How-
ever, separating the dedarations of instances of Mit ex and Thi ng alows svera ob-
jedsto be quaifiedby asingle instance ofa qualifying type, e.g.

Thing t1 = exclusive Thing.init();

Thing t2 = exclusive Thing.init();
In this case both t 1 and t 2 are synchronised using the same semaphare instance, and
in fad even objects of different types could be synchronised together, e.g.

Thing t1 = exclusive Thing.init();

Anot her Thing t2 = excl usive AnotherThing.init();
One dfed of creaing an anonymous instanceis that its own instance methods cannat
be eplicitly invoked. This makes nse for synchronisation, which neels no explicit
methods. However, most qualifying types need such explicit methods. For example,
the bradket routines of a qualifying type might chedk that clientsare listed inan ACL.
Such types neal explicit methods for maintaining entries in the ACL. These normal
methods must be invocable via an explicit variable. The asence of explicit methods
in synchronising typesis the exception rather than the rule.
When a dient invokes an operation d t (i.e. by cdling doSonet hi ng or doSone-
thingEl se, or by modifying the &strad variable anAbstractVariable Or an-
Abst r act Ref er ence) the op bradket of the instance excl usi ve is sheduled. Similarly
the invocaion o get Sonet hi ng Or get Sorret hi ngEl se or the reading d anAbst r act -
Vari abl e Or anAbst r act Ref er ence cause the enq bradket to be scheduled.
If the equal methodof Thi ng isinvoked, no bradket routine intervenes diredly. How-
ever, when its implementation accesses the instance methods of its parameters, these
are bracketed as appropriate.

4 Reader-Writer Synchronisation

Digtinguishing ketween op and enq methods fadlit ates the development of compo-
nents which provide reader-writer synchronisation in a general way. Here is a type



definition and an implementation based on the reader priority algorithm first pub-
lished by Courtois, Heymans and Parnas [4], cf. sedion 1.
type RWync qualifies any
augnenting {
op bracket op(...); // brackets ops
op bracket enq(...); // brackets engs
} {/* no "normal" nethods */}

impl Curtois of RWync
reuses Miutexl {
Semaphor e reader Excl usi on = Semaphore.init(1);
int readcount = 0;
op bracket enq(...) { //reader synchronisation
reader Excl usi on. p(); readcount ++;
if (readcount == 1) ~Miutexl. mutex. p();
reader Excl usi on. v();
try {return body(...);}

finally {
reader Excl usi on. p(); readcount--;
if (readcount == 0) ~Miutexl. mutex.v();
reader Excl usi on. v();

}

}
}
In this implementation the op bradket routine and the mutual exclusion semaphare

nut ex are re-used from mut ex14. (Code re-use in Timor is described in [9, 10].)

5 Bounded Buffer Synchronisation

We now consider how a bounded bufer might be synchronised using bradket rou-
tines. First we define a basic unsynchronised type:
type BoundedBuffer {
maker init(int maxSize);
op void produce( ELEM e);
op ELEM consune();
}
The type ELEM can be thought of as any relevant type, here representing the type of
the dements in the buffer. Timor suppats a generic mechanism aong the lines de-
scribed in [6], but this is not diredly relevant to our discusgon and is not described
here. The followingisasimple array implementation:
i npl BB of BoundedBuffer {
ELEM ] buffer;
int nextFull = 0, nextEnpty = 0;
int bufferSize;
op void produce(ELEM e) {
buf fer[ next Enpty] = e; nextEnpty++; nextEnpty % bufferSi ze;

}

op ELEM consune() {
ELEM tenp = buffer[nextFull]; nextFull ++;, nextFull % bufferSize;
return tenp;

}

4 As multiple implementations can be re-used the hat symbal indicates which im-
plementation is actualy being re-used in a super -like context.



maker init(int maxSize) {
bufferSize = maxSi ze; buffer = ELEM].init(maxSi ze);

}
}

There ae severa possbiliti es for synchronising a bounded buffer, depending onthe
number of producer and the number of consumer processes. In the simplest case the
basic type can ke ued in asequertial program which does not require g/nchrorisation
(thoughthe program logic must then be designed to ensure that overflow and under-
flow of the buffer do notocaur).

Now consider the cae of a single producer and a single mnsumer process Here the
two instance methods require different synchronisation protocols. But since both are
op methods, the technique described so far is inadequate. Instead we can use aspe-
cialised qualifying type, i.e. a type designed to qualify some specificdly named
type(s) rather than any type. Hereis an example:

type SyncBB qualifies BoundedBuffer
augnenting {

op void produce( ELEM e);

op ELEM consume();

{ maker init(int naxSize);

}
Here the qual i fi es clause nominates a spedfic type and spedfies which of its meth-
0ds are to be qualified. In this example amaker of the qualifying type needs to be
explicitly parameterised, as we efrom the foll owing implementation code:

i npl SyncBBl of SyncBB {
Semaphore full = Semaphore.init(0);
Semaphore enpty;
maker init(int nmaxSize) {
enpty = Semaphore.init(maxSize);

op void produce(ELEM e) {
empty.p(); try {body(...);} finally {full.v();}

op ELEM consure() {
full.p(); try {return body(...);} finally {enpty.v();}

}
In this example the body statement in the two hradket routines uses the parameter

form (...) to indicae that the adual parameters are not modified, althoughthis is

possble in the cae of specialised bradket routines. (It would be crred for example

to formulate the body statement in the pr oduce bradket asbody(e).)

Given an initialised integer maxsi ze, which defines the maximum number of entries

in the buffer, an instance of syncBB designed to qualify abuffer canbeinstantiated as.
SyncBB synchroni sed = SyncBB.init (maxSi ze);

An instance of BoundedBuf f er can be qualifiedas follows by synchr oni sed:
BoundedBuf f er bb = synchroni sed BoundedBuf fer.init(neaxSize);

The instance bb is now adequately synchronised provided that it is accessd only by a

single producer processand a single conaumer process

However, if a buffer can be accesd in parallel by multiple producers, these must

exclude eat ather (thoudh na a amnsumer processor processs). An inefficient way

of achieving thisisto associate an instanceof mut ex with it, e.g.



Mit ex exclusive = Mutex.init();
BoundedBuf f er bb = synchroni sed, excl usive
BoundedBuf f er. i ni t (naxSi ze);

If aninstanceis qualified by more than one qgdifyinginstance, Timor defines that the
order of applying the bradet routines is left to right. Thus in this example when the
produce Or the consume method is invoked, the relevant bradket routine of
synchroni sed is exeauted first, and when it executes the body statement this results in
the op bradket routine of excl usi ve being invoked. Then when the latter exeautes the
body statement the relevant method d bb isinvoked. In this example the order of the
qualifying types is ggnificant. Reversing this order leads to a deallock if a producer
attemptsto accessafull buffer or aconsumer attempts to accessan empty buffer.
Using mutual exclusion with a bounded bufer isinefficient, becaise producers need
only exclude other producers and consumers other consumers, as the SyncBB type
takes care of mutual interference between the two groups as grouys.

To hande the cae of multiple producers another spedalised type canbe defined:

type MultiProducer qualifies BoundedBuffer
augnenting {
op voi d produce( ELEM e);

{ /* no normal methods */ }

i npl ProdMutex of Milti Producer {
Semaphore nmutex = Semaphore.init(1);
op void produce(ELEM e) {
mutex. p(); try{body(...);} finally {mutex.v();}

}
Thisisasimple variant of mut ex which is defined as a spedalised type, thus all owing

the bradket code to be gplied spedficdly to the produce method withou affeding
the consume method (Wit ex canna discriminate between these two op methods.) An
instance canbeinitiali sed as foll ows:

Mul ti Producer nultiProducer = MultiProducer.init();
Similar considerations apply to multiple parallel consumers, leading to the definitions:

type Ml ti Consunmer qualifies BoundedBuffer
augmenting {
op ELEM consune();

{ /* no normal nethods */ }

i mpl ConsMut ex of Milti Consuner {
Semaphore nmutex = Semaphore.init(1);
op ELEM consume() {
mutex. p(); try{return body(...);} finally {mutex.v();}

}
and an instantiation

Mul ti Consuner nul ti Consuner = MultiConsuner.init();
Given these alditional comporents adual buffers can be dedared to suit any syn-
chronising case, asfollows:
(a) One conaumer process,severa prodwces:

BoundedBuf fer bb = synchroni sed, nulti Producer
BoundedBuf f er. i ni t (naxSi ze) ;

(b) One producer process several consumers:

BoundedBuf fer bb = synchroni sed, nulti Consuner
BoundedBuf f er . i ni t (naxSi ze) ;



(c) Severa producers, several consumers:

BoundedBuf fer bb = synchroni sed, nulti Producer, nulti Consuner
BoundedBuf f er. i ni t (naxSi ze) ;

6 Specialised Qualifying Typesvs. Subtyping

Inheritanceis a hall mark of traditional OO languags. This isnat a reassonéable dterna-
tive to gereral qualifying types for achieving such aims as mutual exclusion a realer-
writer synchronisation, becaiuse the use of subtyping to achieve such aimsimplies that
spedal code hasto be alded to ead type to be qualified. However, it isinteresting to
compare subtyping with spedalised qualifying types.

In any OO programming languege a ¢ass correspondng to the type BoundedBuf f er
and its implementation BB can have asubclasswhich extends it to add the functional -
ity of syncBB and its implementation SyncBB1, by owerriding the methods pr oduce
and consume and from within the overriding methods using super to invoke the origi-
nal methods at the point where the bradet routines of SyncBB1 invoke the body
statement. We cdl this sibclass SyncBBderi ved. It can corredly implement the cae
of asingle producer and a single consumer.

We can now apply the same technique to mimic the dfed of Ml ti Producer, i.e. by
extending SyncBBder i ved with a subclassmul ti Producer Deri ved, which overwrites
the method pr oduce to add mutual exclusion.

Since multiple consumers are handled arthogorally to multiple producers they might
be provided for in afurther subclassof SyncBBderived, i.e. Mil ti Consuner Deri ved,
which overwrites the method consune to add mutual exclusion.

The cae of both multiple producers and multiple consumers can be handled in a new
class Ml ti Producer Consuner Derived which inherits from both MiltiPro-
ducer Derived and Ml ti Consuner Derived withou adding rew methods. This is
ill ustrated in Figure 2:

SyncBB
derived
MultiProducer MultiConsumer
Derived Derived
MultiProducer
ConsumerDerived

Fig. 2: A SubclassHierarchy

Since this idedly requires multiple implementation inheritance, languages sich as
Java caana handle the situation cleanly, so that a language which suppats qualifying
types might be regarded as superior to these. However, there ae of course OO lan-
guages which do handle multi ple implementation inheritance, including Timor.

This hierarchy isin faa typicd of the kind o multi ple inheritance which arises when
orthogoral properties (here multiple producers and multiple cnsumers) are com-




bined, asis discussed in more detail in [10], and a Timor solution can follow the same
pattern asis outlined there for the example of the Timor Collection Library.
Althougha solution based on qu@lifying types can in this case be handed via subtyp-
ing, nat al solutions can easily adieve this. In fad one might consider it almost a
matter of luck that the éowve solution is corred, because it adually resultsin the pro-
ducer and consumer mutual exclusions being applied before the standard bufer syn-
chronisation (from SyncBBderi ved) is applied. Fortunately this does not lead to a
deadlock. However, using subtyping in the same way to mimic the first solution pre-
sented (based onthe use of asingle nut ex semaphare to synchronise both producers
and consumers, seeFigure 3) would result in an incorred solution which contains the
risk of deadlocks.

Fig. 3: A Subclass Hierarchy with Full Mutual Exclusion

Changing the order in the hierarchy (i.e. pladng Mt exDerived above SyncBB-
derived, seeFigure4) can solve that problem, but then it leads to a further problem:
instances of mut exDerived would na synchronise crredly. That can be avoided by
defining it as an abstrad class But there remains a further problem. We now no
longer have a ¢asswhich ssimply synchronises a single producer and a single @n-
sumer withou the owerkill of mutual exclusion.

Fig. 4: A Rearranged SubclassHierarchy

We seefrom this example that subtyping is considerably lessflexible in some circum-
stances than qualifying types, becaise using it to mimic bradet routines with cdlsto
overridden methods determines the order of the "bradket routines’, and this order may
not correspond to the logic required by the problem being solved. Furthermore, in
contrast with qualifying typesin Timor (which do na result in new subtype relation-
ships), the use of subtyping to mimic bradket routines also creaes new type relation-
ships which may notbe appropriate [14].

Two further points are dso relevant. Synchronisation, as was noted abowe, is excep-
tional from the viewpoint of qualifying typesin that it does not require its own ex-
plicit methods. If qualifying types are mimicked by subtyping they must add any
additional methods to those which appea in the supertype. While this is possble, it



may na be desirable. For example if a qualifying type implements protedion by
means of an accesscontrol list (and therefore has methods for adding entries to and
removing them from this list) it would be inappropriate to add these methodks to in-
stances being proteded! Finaly the flexibility which allows an instance of a qualify-
ing type to qualify more than ore qualified instance caina be simulated straightfor-
wardly by meansof subtyping.

7 Synchronising Views

The use of specialised qualifying types has © far been ill ustrated by cefining types
which qualify instances of individual types. However, the red power of spedalised
bradet routines comes into play when theyare used to qualify vi ew interfaces® which
might be included in many types. For example one might define aview Cpenabl e
alongthe following lines:

vi ew Openabl e{

const int CLOSED = O;

const int READ = 1,

const int WRITE = 2;

op void open(int openhMde) throws OpenError;
op void close();

enqg i nt current Openhode();

}
which could appropriately be included in many type definitions. On the basis of such
aview it is then possble © define a gecialised qudifyingtype, e.g.:
type OpenSynchroni sed qualifies Openable
augnenting {
op voi d open(int openhbde);
op void close();

{/* as usual with synchronisation, there are no explicit nmethods *}
with an implementation which uses the parameter openibde to determine when to
apply the reader and when the writer synchronisation protocol. (In the dose bracket it
can accessthe enguiry cur rent OpenMode for the same purpose.)

Objeds of types extending Openabl e can be instantiated with OpenSynchr oni sed, e.g.
type Openabl eThi ng ext ends Thi ng, Openabl €;

OpenSynchroni sed openSync = QpenSynchronised.init();

Openabl eThing ot = openSync Openabl eThing.init();

To attempt to use @nventional subtyping to achieve the bradeting in such a cae
would require that ead type to be synchronised (e.g. type Openabl eThi ng) would
have to be individually implemented with the synchronisation code. Hence it makes
sense to suppat spedalised quaifying typesin additionto conventional inheritance

5 A view interfacedefines methods which can be included in different types. It can
have an implementation but no maker. It cannot be independently instantiated.



8 Related Work

This paper has ill ustrated by example how one asped commonly encourtered in pro-
gramming situations, viz. synchronisation, can be haanded usng qudifying types with
bradket routines. The basic ideais based onealier work in our gioup,beginning with
the concept of attribute typesand bradket routines cf. [8].

The ideathat code can be addd to existing procedures is by no means new, and dates
bad at least to Pascd-Plus[21]. A form of bradketing is possblein amost al objed
oriented languages by redefining the methods in a subclass and cdling the original
methods from within the redefined methods via asuper construct. So, for example, a
class RwsyncThi ng can be defined as a subclass of Thi ng. But in languages which
suppat only single inheritance, a subtype RwéyncBook Of Book must include dl the
same additional code as RvéyncThi ng.

In languages such as Eiffel [15] with multiple inheritance, a dassRwsync can be de-
fined and inherited by bdh RwyncThi ng and RwéyncBook. This means that the type
Rwsync is only dedared in a single place The bradketing must, however, ill be
adhieved via redefinition in bath RvéyncThi ng and RwéyncBook.

When the i nner construct of Beta [13] (cf. body) appeas in a superclassmethod, the
same method in a subclassis bradketed by the cde of the superclassmethod But a
Beta superclassRwsync would need to know exadly which methods occur in its sib-
class RwsyncThing in order to bradket them and would therefore be of no wse in
bradketing RwsyncBook.

Mixins are ageneralization d both the super andthei nner constructs. The language
CLOS [5] alows mixins as a programming technique withou supporting them as a
spedal language construct, but a modification o Modua-3 to suppat mixins explic-
itly has also been proposed [3]. A mixin is a dasslike modifier which can operate on
a dassto produce asubclassin a manner similar to that of qualifying types. So, for
example, a mixin Rvéync can be combined with a dassThi ng to creade anew class
RWsyncThi ng. Bradketing can be adieved by wsing the ‘cdl-next-method statement
(or super inthe Modua-3 proposal) in the code of the mixin methods. As with Beta,
however, the names of the methods to be bracketed must be known in the mixin. This
again preventsit from being usedasa gereral component.

In [19] encgpsulators are described as a novel paradigm for Smalltalk-80 program-
ming. The dm is to define general encgpsulating oljeds (such as a monitor) which
can provide pre- and pat-adions when a method d the encgpsulated oljed is in-
voked. Thisis smilar to bradcket routines but is based onthe asumption that the en-
cgpsulator can trap any message it recaves at run-time and passthis on to the encep-
sulated ohjed. Thisis feasible only for a dynamicdly typed system. The mechanism
ill ustrated in this paper can be seen as a way of achieving the same result in a stati-
cdly type-safe way via alimited form of multiple inheritance The gplications of
encagpsulators are dso more limited than bradket routines snce there is no way for
them to distinguish between eadler and writer methodks.

Spedalised qualifying types can be ssmulated using Java proxies, but the program-
ming is considerably more ambersome, and methods to be bradeted cannd be iso-
lated from those not requiring lrackets. Thus all method cdls to atarget objed must
be redireded to the proxy. In a cae such as Openabl e, where the open and cl ose
methods need be cdled oy once between which many ather methodinvocations can
occur, this can be very inefficient. Even when methods require bradeting the go-



proach is inefficient: the proxy oljed and an associated handler must both be in-
voked, and refledion used to establi sh which target methodshave ber invoked. Mul-
tiple qualification of a target methodis particularly complicated and inefficient.
Compositionfilters[2] alow methods of a dassto be eplicitly dispatched to intemal
and external objeds. In addition the message asciated with a method cdl can be
made available via ameta filter to an interna or external objed, thus allowing the
equivalent of a bradket routine to be cdled. However, becaise filters are defined in
the "target" class a dynamic asociation d filters with clases is not possble, and al
the objeds of aclassare qudlified in the same way.

MetaCombiners suppat the dynamic addition/removal of mixin-like adjustments for
individual objeds [16]. The dfed of spedaised qualifying types can be athieved
with specialisation adjustments (which can invoke super) on an individual objed
basis. Similarly field acquisition and field overriding [17] can be used to simulate
inheritance of field methods and thereore in conjunction with the keyword fi el d (cf.
super ) can simulate the use of body in bracket routines. In both case there apgasto
be no equivalent to general bradket routines.

The experimental language Piccola [1] is a comporent composition language which
alows abstradions not well suppated by the OO paradigm (such as s/nchronisation)
to be integrated into applicaions. While it has Smilar aims, it differs from the Timor
approach, where qualifying types are integrated into the base language and therefore
neead no pecialcompasition languag.

The AOP language AspedJ[12] and similar languages (cf. [20]) can achieve many of
the aims of qualifying types, but with anumber of limitations:

- Because Java has no way of distingushing between op and eng methods, some wn-
vention for method names must be used (e.g. methods beginning with set are writers,
those with get are realers). For target classes not developed acarding to the mnven-
tion ead classmust be examined individually anda sparate agpectdeveloped for it.

- Because they operate & the source level an asped affeds the target class so that
diff erent objeds of the same classcannotbe quified in diff erent ways.

- Because aspeds are not separately instantiated an asped "instance' canna be flexi-
bly associated with a group of objects rather thana single objedt.

- New methods explicitly defined with an asped (“introduction") become methods of
the qualified oljeds. Thus methods defined, for example, to manipulate an ACL in a
protedion asped, become methods of the objeds being proteded, so that a proteded
objed includes the methods which contral its protedion!

- Because the order of the exeaution d AspedJ adviceis daticdly defined in aspeds,
these must be defined with a knowledge of ead aher, except in cases where prece-
denceis considered to be irrelevant. In contrast the exeaution ader of Timor bradet
routinesis easily definedat the time atarget ohjed is creaed.

- In contrast with AspedJ aspeds, general qualifying types and spedalised types
based on vew interfaces (e.g. penabl €) do nd depend ona knowledge of (or the
presence at compile time of) ead aher's ource ®de or that of types which they
might qualify.

9 Conclusion

The paper has ill ustrated the use of Timor qualifying types, using synchronisation as
an example. Inevitably nat al feaures of this new concept have been described in



full. Future papers will discusshow qualifying types are defined, how they relate to
the type system and how they kehave (for example when nested) at run-time.

The mmparison with other work indicates that qualifying types provide apowerful
new mechanism for suppating general aspeds of programming, such as synchronisa-
tion, protedion and monitoring. It is particularly advantageous that they can be sepa-
rately implemented as comporents which can be applied in many cases to any type, or
in more spedali sed casesto any type which suppats a particular view interface
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