

Taking Information Hiding Seriously
in an Object Oriented Context

J. Leslie Keedy, Gisela Menger and Christian Heinlein

Department of Computer Structures
University of Ulm

D-89069 Ulm
Federal Republic of Germany

{ keedy, menger, heinlein} @informatik.uni-ulm.de

Abstract. Although information hiding is widely recognised as a key strategy
for well engineered software systems, its use is not encouraged by standard ob-
ject oriented programming languages. The paper explores a fundamental aspect
of this issue, namely the idea that a programmer should be free to implement a
module in any way which fulfils its specification. We show how taking this
freedom seriously creates problems for the conventional object oriented dot no-
tation, and we present a solution which permits client programmers to continue
to use this notation without restricting the freedom of implementors.

1 Introduction

At the heart of the information hiding principle [8] is the idea that a module specifica-
tion should not include "raw" data structures as part of the module interface, since
these are difficult to specify and they are often subject to change (e.g. to allow optimi-
sations to be introduced, or to reflect modifications in a system's requirements). In-
stead interfaces between modules should, according to the information hiding princi-
ple, be expressed exclusively procedurally, i.e. in OO terms as methods.
In contrast, it is widely accepted OO practice to allow data fields to be included in the
public members of a class. Probably the main reason for this approach is that com-
pletely procedural interfaces can be both inconvenient and inefficient, especially
when defining small object classes corresponding for example to records in Pascal or
structures in C, or indeed to records in database systems.
One way of attempting to bridge this gap between information hiding and the OO
paradigm is to view a public data field as being equivalent to a pair of methods, one
which sets the value of the field, the other which returns its value. However, this
widely known technique is by no means as simple as might be assumed, especially if
the basic idea behind the information hiding principle is taken seriously, i.e. that it
provides an implementation programmer with complete freedom to implement a
module as he chooses, provided that the implementation fulfils the specification.

In this paper we show what difficulties can occur and we present the Timor solution
for these. Timor is a new programming language currently under development at the
University of Ulm [1-4]1.
Section 2 outlines the idea of set and get methods and section 3 presents a standard
implementation for them. The client programmer's view of a module which uses set
and get methods is discussed in section 4, while section 5 considers the relevance of
differences in object semantics between languages such as Java (where objects are
always implemented by hidden pointers) and C++ (which distinguishes between
pointers and values). Section 6 presents a non-standard implementation of a trivial
type which shows that similar problems arise with both forms of semantics. Then in
section 7 the basic Timor solution, based on the idea of abstract variables at the type
level, is presented. Section 8 then discusses the issue of non-standard implementations
of abstract variables. Section 9 discusses how this affects the usual interpretation of
the dot notation. Finally related work and concluding remarks are provided in sections
10 and 11 respectively.

2 Set and Get Methods

In the context of the idea of set and get methods, a Java field declared as
publ i c i nt aVal ue;

can be considered as (approximately) equivalent to the method pair
i nt aVal ue(i nt aVal ue) ; / / t he set met hod
i nt aVal ue() ; / / t he get met hod

In simple cases this creates no problems, but if the information hiding principle is
taken seriously, it soon becomes evident that this alone does not completely solve the
problem, especially when a class includes a public variable which is not a basic type.
Throughout this paper we illustrate the problems which arise in terms of a class
Per son, in which a public field Dat e dob, defining the Per son's date of birth, appears.
The Per son definition includes:

cl ass Per sonWi t hVar i abl es {
 publ i c St r i ng name;
 publ i c Dat e dob;
 . . .
}

and the Dat e definition includes
cl ass Dat eWi t hVar i abl es {
 publ i c i nt day, mont h, year ;
 publ i c voi d r eset () { . . . }
}

Reformulating these to replace concrete data fields as method pairs, and using an
interface as a type definition (which might have different implementations), we have:

i nt er f ace Per son {
 St r i ng name(St r i ng name) ;
 St r i ng name() ;
 Dat e dob(Dat e dob) ;
 Dat e dob() ;
 . . .
}

1 see http://www.timor-programming.org

i nt er f ace Dat e {
 i nt day(i nt day) ;
 i nt day() ;
 i nt mont h(i nt mont h) ;
 i nt mont h() ;
 i nt year (i nt year) ;
 i nt year () ;
 voi d r eset () ;
}

which seem quite harmless. We now consider why this is not the case. We have delib-
erately omitted code details so that in the following sections the above can serve as
type definitions which might have different implementations.

3 A Standard Implementation for Set and Get Methods

We begin with an obvious implementation of the set and get methods. In Java an
obvious implementation of Per son is:

cl ass Per sonI mpl i mpl ement s Per son {
 Per sonI mpl (. . .) { . . . }
 pr i vat e St r i ng name;
 publ i c St r i ng name(St r i ng name) { r et ur n t hi s. name = name; }
 publ i c St r i ng name() { r et ur n t hi s. name; }
 pr i vat e Dat e dob;
 publ i c Dat e dob(Dat e dob) { r et ur n t hi s. dob = dob; }
 publ i c Dat e dob() { r et ur n t hi s. dob; }
 . . .
}

and of Dat e is:
cl ass Dat eI mpl i mpl ement s Dat e {
 Dat eI mpl (i nt day, i nt mont h, i nt year) {
 t hi s. day = day; t hi s. mont h = mont h; t hi s. year = year ;
 }
 pr i vat e i nt day;
 publ i c i nt day(i nt day) { r et ur n t hi s. day = day; }
 publ i c i nt day() { r et ur n t hi s. day; }
 pr i vat e i nt mont h;
 publ i c i nt mont h(i nt mont h) { r et ur n t hi s. mont h = mont h; }
 publ i c i nt mont h() { r et ur n t hi s. mont h; }
 pr i vat e i nt year ;
 publ i c i nt year (i nt year) { r et ur n t hi s. year = year ; }
 publ i c i nt year () { r et ur n t hi s. year ; }
 publ i c voi d r eset () {
 t hi s. day = 0; t hi s. mont h = 0; t hi s. year = 0;
 }
}

We subsequently refer to this style of implementation for the set and get methods,
consisting of a private variable and method implementations which modify or return
the value of the variable, as a standard implementation.

4 The Client View

Does this technique work as a client would like it to? Ideally he would like to use the
procedurally defined versions of the classes Per son and Dat e as if they were identical

to the original versions defined to contain public variables. The following trivial piece
of code shows that this is not the case.

Per son p = new Per sonI mpl (. . .) ;
Dat e d1 = new Dat eI mpl (1, 1, 2000) ;
p. dob = d1;

Because dob has become a private field, it cannot be directly modified. Instead the set
method has to be used, i.e.

p. dob(d1) ;

A similar case arises when attempting to read the dob field. Instead of writing
d1 = p. dob;

the client writes:
d1 = p. dob() ;

This may appear to be syntactically less attractive, and we shall later consider how the
situation can be improved with some syntactic sugar. But at this stage we pursue the
semantic issues further.
The type Dat e has its own methods, which the client may wish to invoke. If it were a
public field he would use the dot notation, e.g.

p. dob. r eset () ;

But because dob has become a private field, it cannot be directly used by a client in a
dot expression. Consequently the client would have to rephrase the last statement as:

p. dob() . r eset () ;

In this case he first "gets" the field and then invokes the required method. With the
concrete fields available as public members the client could also write, e.g.:

p. dob. day = 3;

i.e. he could directly set the day component of dob. The same effect can be achieved,
using the standard implementations, by two conversions to methods, i.e.:

p. dob() . day(3) ;

It thus appears that all is well, provided that the client is prepared to use a clumsier
syntax and that the implementor is prepared to write some tedious implementations.
However, appearances can be deceiving.

5 Reference and Value Semantics for Objects

Java is an example of a language which uses reference semantics, in the sense that it
eliminates explicit pointers, but each variable which is defined to have a structured
type is implemented by a hidden pointer. However, not all OO languages have refer-
ence semantics. What would the above example mean in the context of a language
which supports value semantics for objects, such as C++? Consider a standard im-
plementation which follows the same pattern, i.e. a concrete variable and two methods
which simply set and get this variable, e.g. in an implementation of class Per son:

 pr i vat e:
 Dat e _dob;
 publ i c:
 Dat e dob(Dat e dob) { r et ur n _dob = dob; }
 Dat e dob() { r et ur n _dob; }

In this case there is an immediate problem with nested access using the dot notation,
because an invocation of the dob get method returns a copy of the private variable
dob. Hence an invocation of a method such as

p. dob() . r eset () ;

resets a copy of the variable, but not the actual variable which holds p's date of birth.
To avoid this problem the get method would have to return a reference to the internal
variable. An equivalent modification would also be necessary for the set method. The
changes are not particularly significant. However, this point leads us to a further,
more significant issue.
The standard implementations (whether for Java or in modified form for C++) work
because they include an internal variable that corresponds to the original public vari-
able. But the idea is only useful - in the spirit of information hiding - if an implemen-
tor can provide non-standard implementations. We now consider such an example.

6 A Non-Standard Implementation of Person

If the information hiding principle is taken seriously an implementor should have
complete freedom to implement a type in any way that he sees fit, provided that his
implementation fulfils the specification. This of course implies that he should be able
to produce an implementation which does not contain a private variable correspond-
ing to each set and get pair of methods. Let us take another look at the type definition
for Per son:

i nt er f ace Per son {
 . . .
 Dat e dob(Dat e dob) ;
 Dat e dob() ;
 . . .
}

Suppose that the implementor decides on an implementation in which the dob details
should be compacted into a single integer (rather than using the three integers of the
Dat e standard implementation). The relevant part of his Java implementation might
look like this:

cl ass Per sonI mpl 2 i mpl ement s Per son {
 . . .
 pr i vat e i nt dat eOf Bi r t h; / / hol ds t he compact ed dat e of bi r t h val ue
 publ i c Dat e dob(Dat e dob) {
 year (dob. year ()) ; mont h(dob. mont h()) ; day(dob. day()) ; r et ur n dob;
 }
 publ i c Dat e dob() {
 r et ur n new Dat eI mpl (day() , mont h() , year ()) ;
 }
 / / pr i vat e met hods f or f or mat conver si on
 pr i vat e voi d day (i nt day) { / / set s i nt er nal day f r om i nt f or mat
 dat eOf Bi r t h = dat eOf Bi r t h - dat eOf Bi r t h % 100 + day;
 }
 pr i vat e i nt day() { / / r et ur ns i nt er nal day i n i nt f or mat
 r et ur n dat eOf Bi r t h % 100;
 }
 pr i vat e voi d mont h(i nt mont h) { / / set s i nt er nal mont h f r om i nt f or mat
 dat eOf Bi r t h =
 dat eOf Bi r t h – dat eOf Bi r t h % 10000 + mont h * 100 + dat eOf Bi r t h %100;
 }
 pr i vat e i nt mont h() { / / r et ur ns i nt er nal mont h i n i nt f or mat
 r et ur n (dat eOf Bi r t h % 10000 - dat eOf Bi r t h % 100) / 100;
 }
 pr i vat e voi d year (i nt year) { / / set s i nt er nal year f r om i nt f or mat

 dat eOf Bi r t h = year * 10000 + dat eOf Bi r t h % 10000;
 }
 pr i vat e i nt year () { / / r et ur ns i nt er nal year i n i nt f or mat
 r et ur n dat eOf Bi r t h / 10000;
 }
}

This (partial) implementation of Per son fully accords with the information hiding
principle, which is about being able to hide implementation details (especially of data
structures) behind a procedural interface. Yet semantically it does not fulfil the expec-
tations of client programmers, as discussed above. The problem is that even in this
Java example - despite the use of reference semantics for objects - the client pro-
grammer cannot invoke methods of the "correct" Dat e object, because such an object
does not even exist.
Attempts to do so, e.g. by method invocations such as

p. dob() . r eset () ;

or
p. dob() . day(3) ;

are not recognised as errors by the compiler or the run-time system, since these are
valid method invocations on the Dat e object returned by the get method dob, but se-
mantically this is not the original object which contains the actual date of birth in this
implementation of Per son. Hence resetting the date using the r eset method or chang-
ing the day using the day set method of the nested "variable" have no effect on the
date of birth as it is stored in the Per son object.
In Java it is in fact possible to implement a semantically correct non-standard imple-
mentation based on the idea that in an invocation such as

Dat e d = p. dob() ;

a proxy object is returned. This holds a back reference to p (either implicitly using an
inner class or explicitly using a nested static class). Hence when d. r eset () is in-
voked, this can execute the required algorithm.
This solution relies on the fact that Java uses reference semantics for all variables.
However, it cannot simply be carried over to produce a solution in C++ (or other
languages which use value semantics and pointers), because the value returned by a
method invocation such as p. dob() involves returning a value, not a pointer. Hence
the only way to produce a semantically correct implementation in C++ is to include
an actual variable of type Dat e in the implementation of Per son and to pass a refer-
ence to this back to clients in the get method of dob.
Thus in languages which support value semantics the object oriented paradigm re-
stricts the implementation programmer's freedom to implement a type as he sees fit.

7 Abstract Variables

One of the main aims in the design of Timor [1-4] is to provide a suitable framework
for developing fully modular software systems, and in this respect the information
hiding principle plays a key role. As a consequence the conventional class construct
has been abandoned in Timor and instead a rigorous distinction is drawn between
types and their (potentially multiple) implementations, based on a rigorous application
of the information hiding principle. Nevertheless the language shares many of the
aims of the object oriented paradigm.

Timor also introduces a new programming paradigm which allows an object to be
qualified by objects of other types (known as qualifying types [3, 4]). This paradigm
makes it essential - to clarify which variables "belong to" an object for purposes of
qualification and which are other objects to which it refers - to distinguish between
value semantics and reference semantics. Hence, with respect to value semantics, the
proxy pattern discussed in the previous section cannot be carried over to Timor, just
as it cannot be carried over to C++. In the rest of the paper we describe how Timor
tackles the problem set out in the previous sections.

7.1 Abstract Variables in Timor

Timor supports an idea known as "abstract variables". On the one hand abstract vari-
ables provide implementation programmers with complete freedom to implement a
type in any way they choose, while on the other hand client programmers have the
convenience of (apparently) being able to use exported variables, as if they were pub-
lic fields in the object oriented paradigm.
Abstract variables appear in type definitions, e.g.

t ype Per son {
 . . .
 Dat e dob; / / an abst r act var i abl e
 . . .
}

t ype Dat e {
 . . .
 i nt day, mont h, year ; / / t hr ee abst r act var i abl es
 op voi d r eset () ; / / a nor mal met hod
}

In an implementation an abstract variable is formally considered to be a set and get
method pair. For dob in the above example these are defined as follows:

f i nal op Dat e dob(Dat e dob) ; / / t he " set " met hod
 / / an oper at i on (keywor d op) can modi f y t he st at e of an i nst ance

f i nal enq Dat e dob() ; / / t he " get " met hod
 / / an enqui r y (keywor d enq) cannot modi f y t he st at e of an i nst ance

If an abstract variable is declared as f i nal , it only has a get method.
As indicated above, Timor has value semantics, hence the enquiry dob returns a value,
rather than a reference.

7.2 Standard Implementations

The standard implementation for an abstract variable consists of a private (concrete)
variable and a standard implementation of the method pair, e.g.

st at e:
 Dat e dob;
i nst ance:
 op Dat e dob(Dat e dob) { r et ur n t hi s. dob = dob; }
 enq Dat e dob() { r et ur n t hi s. dob; }

Such code is automatically included in implementations of a type in which an abstract
variable is declared, unless the programmer provides a non-standard implementation
(see below). If a type consists only of abstract variables (i.e. it corresponds to a record

or structure) there is an automatic implementation, which consists of the standard
implementations of the individual abstract variables together with a parameterless
constructor (known in Timor as a maker).

7.3 Client Access

A client accesses an abstract variable as if it were a concrete variable, just as he ac-
cesses a public field in the standard OO paradigm. The compiler transforms state-
ments along the following lines:

p. dob = d1 => p. dob(d1)
d1 = p. dob => d1 = p. dob()

The dot notation is used in the conventional way, e.g.
p. dob. r eset () ;

This means that the r eset method is applied to the dob element within p, as would be
expected. An address operator (such as & in C++) has been deliberately avoided in
Timor, because references are intended only to express logical relationships between
complete objects, and pointers to their internal values would violate the information
hiding principle. Thus a value within an object cannot be referenced externally, which
means that the language deliberately excludes the splitting of the above statement into
two parts such as:

Dat e* d = &p. dob; / / i nval i d i n Ti mor
d. r eset () ;

This has the effect that the expressions
p. dob. r eset () ;

and
(p. dob) . r eset () ;

have different meanings. The first resets the internal date in p, while the second copies
the internal date (as in d1 = p. dob above) and then resets the copy. Hence in a dot
expression the appearance of an abstract value name at the end of an expression re-
turns a value, whereas its use in a non-terminating situation has the conventional
object oriented meaning, corresponding to a pointer (which is not directly accessible
to clients) that defines the context for the next element in the expression.

8 Non-standard Implementations of Abstract Variables

Timor gives an implementation programmer complete freedom to implement a type
however he chooses. Consequently, if the type definition includes an abstract vari-
able, the programmer is not required to include in his implementation a concrete vari-
able with the same type and name as those of the abstract variable, although he can do
so if he wishes.
To program a non-standard implementation of an abstract variable the programmer
explicitly includes method implementations for the public set and get methods, plus
any further internal methods and/or variables which these require.
We now consider various possible non-standard implementations of the type Per son,
as it appears in section 7.1, beginning with an implementation which includes a corre-
sponding concrete variable for Dat e dob:

i mpl Per sonI mpl 1 of Per son {
 . . .
st at e:
 Dat e dob; / / a concr et e var i abl e
 Log l og;
i nst ance:
 op Dat e dob(Dat e dob) { / / t he set met hod i mpl ement at i on
 l og. wr i t e(" dob f i el d modi f i ed") ;
 r et ur n t hi s. dob = dob;
 }

 enq Dat e dob() {
 l og. wr i t e(" dob f i el d r ead") ;
 r et ur n t hi s. dob;
 }
 . . .

}

This implementation is unproblematic, because the concrete variable Dat e dob pro-
vides the compiler with a starting point for interpreting the dot notation in expressions
such as

p. dob. day = 3;

and the concrete variable dob by definition provides a method, for example, for set-
ting the abstract variable day.
But suppose that the programmer decides on an implementation in which the dob
details should be compacted into a single integer (equivalent to that discussed in sec-
tion 6), which does not include a concrete variable corresponding to the abstract vari-
able. Part of this implementation could be equivalent to that proposed for the Java
version, e.g.

i mpl Per sonI mpl 2 of Per son {
 . . .
st at e:
 i nt dat eOf Bi r t h; / / hol ds t he compact ed dat e of bi r t h val ue
i nst ance:
 op Dat e dob(Dat e dob) { / / t he set met hod i mpl ement at i on
 year (dob. year ()) ; mont h(dob. mont h()) ; day(dob. day()) ; r et ur n dob;
 }

 enq Dat e dob() { / / t he get met hod i mpl ement at i on
 r et ur n Dat e. i ni t (day() , mont h() , year ()) ;
 }
 . . .

/ / i nt er nal met hods f or f or mat conver si on
 op voi d day (i nt day) { / / set s i nt er nal day f r om i nt f or mat
 dat eOf Bi r t h = dat eOf Bi r t h - dat eOf Bi r t h % 100 + day;
 }
 enq i nt day() { / / r et ur ns i nt er nal day i n i nt f or mat
 r et ur n dat eOf Bi r t h % 100;
 }
 op voi d mont h(i nt mont h) { / / set s i nt er nal mont h f r om i nt f or mat
 dat eOf Bi r t h =
 dat eOf Bi r t h – dat eOf Bi r t h % 10000 + mont h * 100 + dat eOf Bi r t h %100;
 }
 enq i nt mont h() { / / r et ur ns i nt er nal mont h i n i nt f or mat
 r et ur n (dat eOf Bi r t h % 10000 - dat eOf Bi r t h % 100) / 100;
 }
 op voi d year (i nt year) { / / set s i nt er nal year f r om i nt f or mat
 dat eOf Bi r t h = year * 10000 + dat eOf Bi r t h % 10000;
 }

 enq i nt year () { / / r et ur ns i nt er nal year i n i nt f or mat
 r et ur n dat eOf Bi r t h / 10000;
 }
}

However, as this stands, there is still a problem when the client attempts to access a
method (or abstract variable) of the nested abstract variable Dat e dob, because this
cannot be located from a concrete variable, and in fact there is no equivalent to these
methods. Consequently, if an abstract variable which has a structured type is given a
non-standard implementation, this must include not only the set and get methods, but
also an implementation of each of the public methods of the nested type.
Timor allows these methods to be implemented by allowing the dot notation to appear
within a method name in an implementation which includes non-standard implemen-
tations of an abstract variable without a corresponding concrete variable. Thus an
implementation of Per son which includes a non-standard implementation of the ab-
stract variable Dat e dob must also include implementations for the set and get meth-
ods dob. day, dob. mont h, dob. year as well as for the method dob. r eset , e.g.

i mpl Per sonI mpl 2 of Per son {
. . . / / as above pl us:
i nst ance:
 op i nt dob. day(i nt day) { day(day) ; r et ur n day; }
 enq i nt dob. day() { r et ur n day() ; }
 op i nt dob. mont h(i nt mont h) { mont h(mont h) ; r et ur n mont h; }
 enq i nt dob. mont h() { r et ur n mont h() ; }
 op i nt dob. year (i nt year) { year (year) ; r et ur n year ; }
 enq i nt dob. year () { r et ur n year () ; }
 op voi d dob. r eset () { day(0) ; mont h(0) ; year (0) ; }
}

In the case of several levels of nesting, the dot symbol appears more than once in
method names.

9. Interpreting Dot Expressions

The alternatives outlined above for implementing nested abstract variables imply that
elements in a dot expression can in practice be interpreted either as concrete variables
(values and references) or as the names of methods. The latter can appear without the
usual parameter brackets (if they correspond to set or get methods of an abstract vari-
able) and they may include compound method names (such as dob. day in the last
example).
For the case where no implementations of types are used which provide implementa-
tions of compound method names, the interpretation of a dot expression is equivalent
to that for a conventional class based OO language (and can be optimised accord-
ingly). However, the interpretation of dot expressions which potentially contain com-
pound names is somewhat more complicated. To help clarify what this involves we
now sketch out a mental model, while emphasizing that this need not be the technique
actually implemented in a compiler.
To evaluate such a dot expression, an abstract variable x whose type X contains meth-
ods m1, m2, etc. is treated as a pair of set and get methods (cf. section 7.1):

 op X x(X x) ;
 enq X x() ;

plus a set of nested methods x. m1, x. m2, etc. having the same parameter and result
types as the original methods m1, m2, etc. In a standard implementation of x (cf. sec-
tion 7.2), these nested methods simply call the original methods on the concrete vari-
able x, while in a non-standard implementation these methods are explicitly provided
by the implementor. If the abstract variable's type X itself contains abstract variables
y, z, etc. (whose types Y and Z might again contain abstract variables, and so on),
these variables are recursively "expanded" into corresponding sets of method pairs
before the abstract variable x is expanded.
To give a concrete example, the type Dat e defined in section 7.1 would be treated as
having method pairs day, mont h, and year as well as a single method r eset . Given
that, the type Per son defined there would be treated as having a method pair dob plus
nested method pairs dob. day, dob. mont h, and dob. year as well as a single nested
method dob. r eset . Finally, if another type Schi zo were defined as

t ype Schi zo {
 . . .
 Per son p1, p2;
}

this would be treated as having method pairs p1 and p2 (which might be called level 1
methods) plus nested method pairs p1. dob and p2. dob (level 2 methods) plus doubly
nested method pairs p1. dob. day, p1. dob. mont h, p1. dob. year , etc. (level 3 methods).
Based on this mental model, the interpretation of arbitrary dot expressions can be
described as follows.
Using Java terminology, a dot expression in Timor is a primary expression whose
primary prefix denotes an entity e of some type T, e.g., a variable, an explicit method
call, or a nested dot expression surrounded by parentheses, each denoting either a
value of type T or a reference to an object of type T. The corresponding primary suffix
is a sequence of identifiers, each preceded by a dot, optionally followed by an argu-
ment list or an assignment operator and an arbitrary expression (the RHS of the as-
signment). In the latter case, the assignment operator is removed and the RHS of the
assignment is transformed into a one-element argument list. If the identifier sequence
is neither followed by an explicit argument list nor by an argument list resulting from
such a transformation, an empty argument list is appended.
To evaluate such a dot expression, the longest method name found in T that is a prefix
of the given identifier sequence is chosen (where the length of a method name is de-
termined by the number of dots it contains). This method is invoked on the entity e,
either with an empty argument list if its name is a proper prefix of the identifier se-
quence, or with the argument list following the identifier sequence if the method
name is equal to the complete identifier sequence. In the latter case, the method's
return value constitutes the value of the dot expression. Otherwise, it is treated as a
new primary prefix, while the remaining sequence of identifiers becomes the corre-
sponding new primary suffix; for these, the evaluation just described is performed
recursively.
For the case where an implementation of a type contains compound names and this is
the only implementation of the type in question, related dot expressions can be fully
analysed at compile time. However, if a single program uses different implementa-
tions of the same type with different implementation techniques (e.g. one uses com-
pound names, one uses concrete variables to implement the methods of nested ab-
stract variables) then the interpretation of a dot expression can only be fully carried
out by run-time code. This is likely to occur only in extremely unusual circumstances.

We anticipate that in almost all practical cases a full compile time analysis will be
possible, since the technique which we have proposed for implementing abstract vari-
ables is likely to be used only in unusual situations (such as the implementation of a
Per son database, as discussed in the next section).

10. Discussion

In terms of the trivial example which we have used throughout the paper it may ap-
pear that the issue addressed is not a serious one. After all this example could have
been much more easily managed simply by providing an implementation of Dat e that
uses an integer representation internally. (In fact one of the strengths of Timor is that
it allows a type to have multiple implementations in a straightforward way.) However,
there are cases where it may be appropriate not to use such implementations in the
implementation of an enclosing type. For example if a database of Per son objects
were to be implemented in a write-through file in such a way that the only representa-
tion of each object in the memory were a key which allows the intended database
object to be located and accessed, then there would be no representation whatsoever
for the abstract variables except in the file. Such examples can be implemented in
Java using the proxy with back reference technique, and they can be implemented in
Timor, despite its value semantics, using the technique described.
It may also appear that the approach leads to scalability problems, but in fact its scal-
ability properties are comparable to those in Java, where for each non-standard im-
plementation of an abstract variable that does not include a concrete variable of the
same name an inner class (or static nested class) is required which implements all the
same routines. (In the case that a Timor module includes several abstract variables of
the same type which also use the same implementation, this can of course be shared.)
On the other hand the approach is in principle more efficient than using Java proxies,
as the overhead of creating and using extra proxy objects is avoided in Timor.
Finally we point out that the issue which has been discussed is completely orthogonal
to other aspects of implementing types in a non-standard way. For example in Timor
there is no direct relationship to the issue of implementing complex types such as a
stack of stack of persons in a non-standard way: a type can be defined (generically or
not) and it can have many implementations. There is no problem in Timor in provid-
ing a special implementation of such a type, and this does not raise any of the issues
discussed in this paper.

11. Related Work

Although information hiding is a widely acknowledged software engineering tech-
nique it is normally not cleanly incorporated into the object orientation paradigm,
which has preferred the simpler class construct (which integrates a type and a single
implementation) to a more rigorous approach which separates types and their (poten-
tially multiple) implementations. Techniques which are sometimes recommended as a
means of providing multiple implementations for a type (such as abstract classes or
Java interfaces as type definitions with their subclasses as implementations) fail to
ensure that the full rigour of information hiding is achieved, and they have the disad-

vantage that the implementation classes themselves also introduce new types, which
can for example tempt the programmer to introduce additional public methods and
fields. But even when a programmer uses an abstract class or an interface as a type
definition he must decide whether to export a variable or provide set and get methods.
With Java interfaces he does not even have this choice: variables cannot be defined as
part of an interface. This harmonises with the information hiding principle but not
with the client's simple requirements of treating certain aspects of the interface in a
natural way as exported data items.
Because in Eiffel a parameterless function and an attribute (variable) are accessed in
the same way (according to the "principle of uniform reference" [6]) it is possible to
redefine a parameterless function declared in a superclass as an attribute in a subclass.
Notice however that the reverse is not possible, since it would only be possible fully
to implement an attribute declared in a superclass by means of two methods (i.e. a set
and a get method) in a subclass. Hence the principle of uniform reference does not
produce the same effect as a Timor abstract variable.
In the language Sather abstract classes are used as type definitions which specify
method signatures without implementations. In [7] this is motivated by the idea that a
class may have different implementations in concrete classes. However, concrete
classes which form the leaf nodes of the type graph can also be used as types. So
called attributes are defined similarly to abstract variables in Timor, as a pair of set
and get methods. If clients use a concrete class as a type, they may call the accessor
routines, but attributes may also be used as if they were variables. In this case no
problems arise with nested attributes or the dot notation because attributes may only
appear in concrete classes, i.e. where the implementations are fixed as so called refer-
ence classes. As it is not possible to define attributes in abstract classes, the level of
flexibility reached in Timor, where abstract variables can be defined in (nested) type
definitions which can have multiple implementations, is not attained.
In the programming language Theta [5] a more convincing attempt has been made to
support the information hiding principle, by strictly distinguishing between types and
their implementations. But types must be defined in terms of methods, i.e. there are
no abstract variables. In implementations (which are not types), a shorthand notation
is provided to implement simple set and get methods by declaring appropriate vari-
ables with implements clauses. This is convenient for the implementor but not for the
client of a type.
The programming language Tau [9] also provides rigorous support for the information
hiding principle, allowing an interface (i.e. a type definition) to include "abstract
instance fields" as members. As in Timor these correspond to get and set methods. In
an implementation (which is called a class, but which in contrast to Java does not
introduce a new type) this can be realised either as a concrete field or as a pair of
methods. A client of the interface can access an abstract field syntactically as if it
were a concrete field. As in Timor exceptions can be associated with the definition of
abstract fields.
In the languages mentioned above the dot notation is interpreted in the context of
reference semantics. They all support the concept of abstract type definitions which
may have multiple and easily interchangeable implementations. In this sense they
share the information hiding aim of Timor. None of these languages provides a
mechanism for re-implementing nested methods or abstract variables in a non-
standard implementation using the technique described in this paper, which is particu-
larly relevant for languages which support value semantics.

Variables at the class interface defined as a pair of access methods which are auto-
matically available to manipulate the state of an object can be found in other lan-
guages too. For example in CLOS [10] such variables are known as slots. As these
slots appear within a class definition they are concrete variables with a standard im-
plementation for their setters and getters, and they are by no means abstract in the
sense of Timor. There is no dot notation because syntactically the functional style of
LISP is used.

12. Concluding Remarks

The paper has shown how Timor takes the final step in reconciling a rigorous inter-
pretation of the information hiding principle with unrestricted user convenience in the
context of a language based on value semantics. On the one hand Timor fully supports
the information principle, allowing any type to have multiple implementations (which
are not themselves types). On the other hand, type definitions can, for the conven-
ience of client programmers, apparently include (or consist entirely of) exported vari-
ables, which can be accessed syntactically as if they are concrete variables. Yet even
in such cases the information hiding principle is not violated, and the implementation
programmer is given complete freedom to implement a type in any way which he sees
fit (provided that it accords with the type specification). This remains true even if a
type is itself defined in terms of nested abstract variables, which the client program-
mer apparently reaches using the dot notation and even if there are no real concrete
variables corresponding to the steps in a dot expression.
The basic technique is well known: a variable can be considered as equivalent to a
pair of methods for setting and getting a value (or a reference). However, we have
seen that when instances of such types are nested the reconciliation of the two con-
cepts is by no means as simple as might at first be thought, especially with respect to
the interpretation of dot expressions.

Acknowledgements

Special thanks are due to Dr. Mark Evered and Dr. Axel Schmolitzky for their invalu-
able contributions to discussions of Timor and its predecessor projects. Without their
ideas and comments Timor would not have been possible. We also thank the referees
for their helpful comments, which have resulted in considerable improvements in the
presentation of the paper.

References

[1] J. L. Keedy, G. Menger, and C. Heinlein, "Support for Subtyping and Code
Re-use in Timor," 40th International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS Pacific 2002), Sydney, Australia,
2002, Conferences in Research and Practice in Information Technology, vol.
10, pp. 35-43.

[2] J. L. Keedy, G. Menger, and C. Heinlein, "Inheriting from a Common Ab-
stract Ancestor in Timor," Journal of Object Technology (www.jot.fm), vol.
1, no. 1, pp. 81-106, 2002.

[3] J. L. Keedy, G. Menger, C. Heinlein, and F. Henskens, "Qualifying Types
Illustrated by Synchronisation Examples," in Objects, Components, Architec-
tures, Services and Applications for a Networked World, International Con-
ference NetObjectDays, NODe 2002, Erfurt, Germany, vol. LNCS 2591, M.
Aksit, M. Mezini, and R. Unland, Eds.: Springer, 2003, pp. 330-344.

[4] J. L. Keedy, K. Espenlaub, G. Menger, and C. Heinlein, "Qualifying Types
with Bracket Methods in Timor," Journal of Object Technology (to appear
2004).

[5] B. Liskov, D. Curtis, M. Day, S. Ghemawat, R. Gruber, P. Johnson, and A.
C. Myers, "Theta Reference Manual," MIT Laboratory for Computer Sci-
ence, Cambridge, MA, Programming Methodology Group Memo 88, Febru-
ary 1994.

[6] B. Meyer, Object-oriented Software Construction. New York. Prentice-Hall,
1988.

[7] N. Nemec, B. Gomes, D. Stoutamire, B. Vaysman, and H. Klawitter, "Sather
- A Language Tutorial," GNU Sather Package.

[8] D. L. Parnas, "On the Criteria To Be Used in Decomposing Systems into
Modules," Communications of the ACM, vol. 15, no. 12, pp. 1053-1058,
1972.

[9] A. Schmolitzky, "Ein Modell zur Trennung von Vererbung und Typabstrak-
tion in objektorientierten Sprachen (A Model for Separating Inheritance and
Type Abstraction in Object Oriented Languages)," Ph.D. Thesis, Dept. of
Computer Structures: University of Ulm, Germany, 1999.

[10] P. H. Winston and B. K. P. Horn, Lisp, 3rd ed. Addison-Wesley, Reading,
MA, 1989.

