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Abstract. Although information hiding is widely recognised as a key strategy 
for well engineered software systems, its use is not encouraged by standard ob-
ject oriented programming languages. The paper explores a fundamental aspect 
of this issue, namely the idea that a programmer should be free to implement a 
module in any way which fulfils its specification. We show how taking this 
freedom seriously creates problems for the conventional object oriented dot no-
tation, and we present a solution which permits client programmers to continue 
to use this notation without restricting the freedom of implementors. 

1 Introduction 

At the heart of the information hiding principle [8] is the idea that a module specifica-
tion should not include "raw" data structures as part of the module interface, since 
these are difficult to specify and they are often subject to change (e.g. to allow optimi-
sations to be introduced, or to reflect modifications in a system's requirements). In-
stead interfaces between modules should, according to the information hiding princi-
ple, be expressed exclusively procedurally, i.e. in OO terms as methods. 
In contrast, it is widely accepted OO practice to allow data fields to be included in the 
public members of a class. Probably the main reason for this approach is that com-
pletely procedural interfaces can be both inconvenient and inefficient, especially 
when defining small object classes corresponding for example to records in Pascal or 
structures in C, or indeed to records in database systems. 
One way of attempting to bridge this gap between information hiding and the OO 
paradigm is to view a public data field as being equivalent to a pair of methods, one 
which sets the value of the field, the other which returns its value. However, this 
widely known technique is by no means as simple as might be assumed, especially if 
the basic idea behind the information hiding principle is taken seriously, i.e. that it 
provides an implementation programmer with complete freedom to implement a 
module as he chooses, provided that the implementation fulfils the specification. 



 

In this paper we show what difficulties can occur and we present the Timor solution 
for these. Timor is a new programming language currently under development at the 
University of Ulm [1-4]1. 
Section 2 outlines the idea of set and get methods and section 3 presents a standard 
implementation for them. The client programmer's view of a module which uses set 
and get methods is discussed in section 4, while section 5 considers the relevance of 
differences in object semantics between languages such as Java (where objects are 
always implemented by hidden pointers) and C++ (which distinguishes between 
pointers and values). Section 6 presents a non-standard implementation of a trivial 
type which shows that similar problems arise with both forms of semantics. Then in 
section 7 the basic Timor solution, based on the idea of abstract variables at the type 
level, is presented. Section 8 then discusses the issue of non-standard implementations 
of abstract variables. Section 9 discusses how this affects the usual interpretation of 
the dot notation. Finally related work and concluding remarks are provided in sections 
10 and 11 respectively. 

2 Set and Get Methods 

In the context of the idea of set and get methods, a Java field declared as 
publ i c i nt  aVal ue;  

can be considered as (approximately) equivalent to the method pair 
i nt  aVal ue( i nt  aVal ue) ;  / /  t he set  met hod 
i nt  aVal ue( ) ;  / /  t he get  met hod 

In simple cases this creates no problems, but if the information hiding principle is 
taken seriously, it soon becomes evident that this alone does not completely solve the 
problem, especially when a class includes a public variable which is not a basic type. 
Throughout this paper we illustrate the problems which arise in terms of a class 
Per son, in which a public field Dat e dob, defining the Per son's date of birth, appears. 
The Per son definition includes: 

cl ass Per sonWi t hVar i abl es {  
 publ i c St r i ng name;  
 publ i c Dat e dob;  
 . . .  
}  

and the Dat e definition includes 
cl ass Dat eWi t hVar i abl es {  
 publ i c i nt  day,  mont h,  year ;  
 publ i c voi d r eset ( )  { . . . }  
}  

Reformulating these to replace concrete data fields as method pairs, and using an 
interface as a type definition (which might have different implementations), we have: 

i nt er f ace Per son {  
 St r i ng name( St r i ng name) ;  
 St r i ng name( ) ;  
 Dat e dob( Dat e dob) ;  
 Dat e dob( ) ;  
 . . .  
}  

                                                           
1  see http://www.timor-programming.org 



 

i nt er f ace Dat e {  
 i nt  day( i nt  day) ;  
 i nt  day( ) ;  
 i nt  mont h( i nt  mont h) ;  
 i nt  mont h( ) ;  
 i nt  year ( i nt  year ) ;  
 i nt  year ( ) ;  
 voi d r eset ( ) ;  
}  

which seem quite harmless. We now consider why this is not the case. We have delib-
erately omitted code details so that in the following sections the above can serve as 
type definitions which might have different implementations. 

3 A Standard Implementation for Set and Get Methods  

We begin with an obvious implementation of the set and get methods. In Java an 
obvious implementation of Per son is: 

cl ass Per sonI mpl  i mpl ement s Per son {  
 Per sonI mpl ( . . . )  { . . . }  
 pr i vat e St r i ng name;  
 publ i c St r i ng name( St r i ng name)  { r et ur n t hi s. name = name; }  
 publ i c St r i ng name( )  { r et ur n t hi s. name; }  
 pr i vat e Dat e dob;  
 publ i c Dat e dob( Dat e dob)  { r et ur n t hi s. dob = dob; }  
 publ i c Dat e dob( )  { r et ur n t hi s. dob; }  
 . . .  
}  

and of Dat e is: 
cl ass Dat eI mpl  i mpl ement s Dat e {  
 Dat eI mpl ( i nt  day,  i nt  mont h,  i nt  year )  {  
  t hi s. day = day;  t hi s. mont h = mont h;  t hi s. year  = year ;  
 }  
 pr i vat e i nt  day;  
 publ i c i nt  day( i nt  day)  { r et ur n t hi s. day = day; }  
 publ i c i nt  day( )  { r et ur n t hi s. day; }  
 pr i vat e i nt  mont h;  
 publ i c i nt  mont h( i nt  mont h)  { r et ur n t hi s. mont h = mont h; }  
 publ i c i nt  mont h( )  { r et ur n t hi s. mont h; }  
 pr i vat e i nt  year ;  
 publ i c i nt  year ( i nt  year )  { r et ur n t hi s. year  = year ; }  
 publ i c i nt  year ( )  { r et ur n t hi s. year ; }  
 publ i c voi d r eset ( )  {  
  t hi s. day = 0;  t hi s. mont h = 0;  t hi s. year  = 0;  
 }  
}  

We subsequently refer to this style of implementation for the set and get methods, 
consisting of a private variable and method implementations which modify or return 
the value of the variable, as a standard implementation. 

4 The Client View 

Does this technique work as a client would like it to? Ideally he would like to use the 
procedurally defined versions of the classes Per son and  Dat e as if they were identical 



 

to the original versions defined to contain public variables. The following trivial piece 
of code shows that this is not the case. 

Per son p = new Per sonI mpl ( . . . ) ;  
Dat e d1 = new Dat eI mpl ( 1, 1, 2000) ;  
p. dob = d1;  

Because dob has become a private field, it cannot be directly modified.  Instead the set 
method has to be used, i.e. 

p. dob( d1) ;  

A similar case arises when attempting to read the dob field. Instead of writing 
d1 = p. dob;  

the client writes: 
d1 = p. dob( ) ;  

This may appear to be syntactically less attractive, and we shall later consider how the 
situation can be improved with some syntactic sugar. But at this stage we pursue the 
semantic issues further. 
The type Dat e has its own methods, which the client may wish to invoke. If it were a 
public field he would use the dot notation, e.g. 

p. dob. r eset ( ) ;  

But because dob has become a private field, it cannot be directly used by a client in a 
dot expression. Consequently the client would have to rephrase the last statement as: 

p. dob( ) . r eset ( ) ;  

In this case he first "gets" the field and then invokes the required method. With the 
concrete fields available as public members the client could also write, e.g.: 

p. dob. day = 3;  

i.e. he could directly set the day component of dob. The same effect can be achieved, 
using the standard implementations, by two conversions to methods, i.e.: 

p. dob( ) . day( 3) ;  

It thus appears that all is well, provided that the client is prepared to use a clumsier 
syntax and that the implementor is prepared to write some tedious implementations. 
However, appearances can be deceiving. 

5 Reference and Value Semantics for Objects 

Java is an example of a language which uses reference semantics, in the sense that it 
eliminates explicit pointers, but each variable which is defined to have a structured 
type is implemented by a hidden pointer. However, not all OO languages have refer-
ence semantics. What would the above example mean in the context of a language 
which supports value semantics for objects, such as C++? Consider a standard im-
plementation which follows the same pattern, i.e. a concrete variable and two methods 
which simply set and get this variable, e.g. in an implementation of class Per son: 

 pr i vat e:  
   Dat e _dob;  
 publ i c:  
   Dat e dob( Dat e dob)  { r et ur n _dob = dob; }  
   Dat e dob( )  { r et ur n _dob; }  

In this case there is an immediate problem with nested access using the dot notation, 
because an invocation of the dob get method returns a copy of the private variable 
dob. Hence an invocation of a method such as 



 

p. dob( ) . r eset ( ) ;  

resets a copy of the variable, but not the actual variable which holds p's date of birth. 
To avoid this problem the get method would have to return a reference to the internal 
variable. An equivalent modification would also be necessary for the set method. The 
changes are not particularly significant. However, this point leads us to a further, 
more significant issue. 
The standard implementations (whether for Java or in modified form for C++) work 
because they include an internal variable that corresponds to the original public vari-
able. But the idea is only useful - in the spirit of information hiding - if an implemen-
tor can provide non-standard implementations. We now consider such an example. 

6 A Non-Standard Implementation of Person 

If the information hiding principle is taken seriously an implementor should have 
complete freedom to implement a type in any way that he sees fit, provided that his 
implementation fulfils the specification. This of course implies that he should be able 
to produce an implementation which does not contain a private variable correspond-
ing to each set and get pair of methods. Let us take another look at the type definition 
for Per son: 

i nt er f ace Per son {  
 . . .  
 Dat e dob( Dat e dob) ;  
 Dat e dob( ) ;  
 . . .  
}  

Suppose that the implementor decides on an implementation in which the dob details 
should be compacted into a single integer (rather than using the three integers of the 
Dat e standard implementation). The relevant part of his Java implementation might 
look like this: 

cl ass Per sonI mpl 2 i mpl ement s Per son {  
 . . .  
 pr i vat e i nt  dat eOf Bi r t h;  / /  hol ds t he compact ed dat e of  bi r t h val ue 
 publ i c Dat e dob( Dat e dob)  {  
  year ( dob. year ( ) ) ;  mont h( dob. mont h( ) ) ;  day( dob. day( ) ) ;  r et ur n dob;  
 }  
 publ i c Dat e dob( )  {  
  r et ur n new Dat eI mpl ( day( ) ,  mont h( ) ,  year ( ) ) ;  
 }  
 / /  pr i vat e met hods f or  f or mat  conver si on 
 pr i vat e voi d day ( i nt  day)  {  / /  set s i nt er nal  day f r om i nt  f or mat  
  dat eOf Bi r t h = dat eOf Bi r t h -  dat eOf Bi r t h % 100 + day;  
 }  
 pr i vat e i nt  day( )  {  / /  r et ur ns i nt er nal  day i n i nt  f or mat  
  r et ur n dat eOf Bi r t h % 100;  
 }  
 pr i vat e voi d mont h( i nt  mont h)  { / /  set s i nt er nal  mont h f r om i nt  f or mat  
  dat eOf Bi r t h = 
   dat eOf Bi r t h – dat eOf Bi r t h % 10000 + mont h *  100 + dat eOf Bi r t h %100;  
  }  
 pr i vat e i nt  mont h( )  {  / /  r et ur ns i nt er nal  mont h i n i nt  f or mat  
  r et ur n ( dat eOf Bi r t h % 10000 -  dat eOf Bi r t h % 100)  /  100;  
 }  
 pr i vat e voi d year ( i nt  year )  {  / /  set s i nt er nal  year  f r om i nt  f or mat  



 

  dat eOf Bi r t h = year  *  10000 + dat eOf Bi r t h % 10000;  
 }  
 pr i vat e i nt  year ( )  {  / /  r et ur ns i nt er nal  year  i n i nt  f or mat  
  r et ur n dat eOf Bi r t h /  10000;  
 }  
}  

This (partial) implementation of Per son fully accords with the information hiding 
principle, which is about being able to hide implementation details (especially of data 
structures) behind a procedural interface. Yet semantically it does not fulfil the expec-
tations of client programmers, as discussed above. The problem is that even in this 
Java example - despite the use of reference semantics for objects - the client pro-
grammer cannot invoke methods of the "correct" Dat e object, because such an object 
does not even exist. 
Attempts to do so, e.g. by method invocations such as 

p. dob( ) . r eset ( ) ;  

or 
p. dob( ) . day( 3) ;  

are not recognised as errors by the compiler or the run-time system, since these are 
valid method invocations on the Dat e object returned by the get method dob, but se-
mantically this is not the original object which contains the actual date of birth in this 
implementation of Per son. Hence resetting the date using the r eset  method or chang-
ing the day using the day set method of the nested "variable" have no effect on the 
date of birth as it is stored in the Per son object. 
In Java it is in fact possible to implement a semantically correct non-standard imple-
mentation based on the idea that in an invocation such as 

Dat e d = p. dob( ) ;   

a proxy object is returned. This holds a back reference to p (either implicitly using an 
inner class or explicitly using a nested static class). Hence when d. r eset ( )  is in-
voked, this can execute the required algorithm. 
This solution relies on the fact that Java uses reference semantics for all variables. 
However, it cannot simply be carried over to produce a solution in C++  (or other 
languages which use value semantics and pointers), because the value returned by a 
method invocation such as p. dob( )  involves returning a value, not a pointer. Hence 
the only way to produce a semantically correct implementation in C++ is to include 
an actual variable of type Dat e in the implementation of Per son and to pass a refer-
ence to this back to clients in the get method of dob.  
Thus in languages which support value semantics the object oriented paradigm re-
stricts the implementation programmer's freedom to implement a type as he sees fit. 

7 Abstract Variables 

One of the main aims in the design of Timor [1-4] is to provide a suitable framework 
for developing fully modular software systems, and in this respect the information 
hiding principle plays a key role. As a consequence the conventional class construct 
has been abandoned in Timor and instead a rigorous distinction is drawn between 
types and their (potentially multiple) implementations, based on a rigorous application 
of the information hiding principle. Nevertheless the language shares many of the 
aims of the object oriented paradigm. 



 

Timor also introduces a new programming paradigm which allows an object to be 
qualified by objects of other types (known as qualifying types [3, 4]). This paradigm 
makes it essential - to clarify which variables "belong to" an object for purposes of 
qualification and which are other objects to which it refers - to distinguish between 
value semantics and reference semantics. Hence, with respect to value semantics, the 
proxy pattern discussed in the previous section cannot be carried over to Timor, just 
as it cannot be carried over to C++. In the rest of the paper we describe how Timor 
tackles the problem set out in the previous sections.  

7.1 Abstract Variables in Timor 

Timor supports an idea known as "abstract variables". On the one hand abstract vari-
ables provide implementation programmers with complete freedom to implement a 
type in any way they choose, while on the other hand client programmers have the 
convenience of (apparently) being able to use exported variables, as if they were pub-
lic fields in the object oriented paradigm. 
Abstract variables appear in type definitions, e.g. 

t ype Per son {  
 . . .  
 Dat e dob;         / /  an abst r act  var i abl e 
 . . .  
}  

t ype Dat e {  
 . . .  
 i nt  day,  mont h,  year ;  / /  t hr ee abst r act  var i abl es 
 op voi d r eset ( ) ;       / /  a nor mal  met hod 
}  

In an implementation an abstract variable is formally considered to be a set and get 
method pair. For dob in the above example these are defined as follows: 

f i nal  op Dat e dob( Dat e dob) ;  / /  t he " set "  met hod 
    / /  an oper at i on ( keywor d op)  can modi f y t he st at e of  an i nst ance 

f i nal  enq Dat e dob( ) ;         / /  t he " get "  met hod 
    / /  an enqui r y ( keywor d enq)  cannot  modi f y t he st at e of  an i nst ance 

If an abstract variable is declared as f i nal , it only has a get method. 
As indicated above, Timor has value semantics, hence the enquiry dob returns a value, 
rather than a reference. 

7.2 Standard Implementations 

The standard implementation for an abstract variable consists of a private (concrete) 
variable and a standard implementation of the method pair, e.g. 

st at e:  
 Dat e dob;  
i nst ance:  
 op Dat e dob( Dat e dob)  { r et ur n t hi s. dob = dob; }  
 enq Dat e dob( )  { r et ur n t hi s. dob; }  

Such code is automatically included in implementations of a type in which an abstract 
variable is declared, unless the programmer provides a non-standard implementation 
(see below). If a type consists only of abstract variables (i.e. it corresponds to a record 



 

or structure) there is an automatic implementation, which consists of the standard 
implementations of the individual abstract variables together with a parameterless 
constructor (known in Timor as a maker). 

7.3 Client Access 

A client accesses an abstract variable as if it were a concrete variable, just as he ac-
cesses a public field in the standard OO paradigm. The compiler transforms state-
ments along the following lines: 

p. dob = d1  =>  p. dob( d1)  
d1 = p. dob  =>  d1 = p. dob( )  

The dot notation is used in the conventional way, e.g. 
p. dob. r eset ( ) ;  

This means that the r eset  method is applied to the dob element within p, as would be 
expected. An address operator (such as & in C++) has been deliberately avoided in 
Timor, because references are intended only to express logical relationships between 
complete objects, and pointers to their internal values would violate the information 
hiding principle. Thus a value within an object cannot be referenced externally, which 
means that the language deliberately excludes the splitting of the above statement into 
two parts such as: 

Dat e*  d = &p. dob;  / /  i nval i d i n Ti mor  
d. r eset ( ) ;  

This has the effect that the expressions 
p. dob. r eset ( ) ;  

and 
( p. dob) . r eset ( ) ;  

have different meanings. The first resets the internal date in p, while the second copies 
the internal date (as in d1 = p. dob above) and then resets the copy. Hence in a dot 
expression the appearance of an abstract value name at the end of an expression re-
turns a value, whereas its use in a non-terminating situation has the conventional 
object oriented meaning, corresponding to a pointer (which is not directly accessible 
to clients) that defines the context for the next element in the expression. 

8 Non-standard Implementations of Abstract Variables 

Timor gives an implementation programmer complete freedom to implement a type 
however he chooses. Consequently, if the type definition includes an abstract vari-
able, the programmer is not required to include in his implementation a concrete vari-
able with the same type and name as those of the abstract variable, although he can do 
so if he wishes. 
To program a non-standard implementation of an abstract variable the programmer 
explicitly includes method implementations for the public set and get methods, plus 
any further internal methods and/or variables which these require. 
We now consider various possible non-standard implementations of the type Per son, 
as it appears in section 7.1, beginning with an implementation which includes a corre-
sponding concrete variable for Dat e dob: 



 

i mpl  Per sonI mpl 1 of  Per son {   
 . . .  
st at e:  
 Dat e dob;                      / /  a concr et e var i abl e 
 Log l og;  
i nst ance:  
 op Dat e dob( Dat e dob)  {  / /  t he set  met hod i mpl ement at i on 
  l og. wr i t e( " dob f i el d modi f i ed" ) ;  
  r et ur n t hi s. dob = dob;  
 }   

 enq Dat e dob( )  {  
  l og. wr i t e( " dob f i el d r ead" ) ;  
  r et ur n t hi s. dob;  
 }  
 . . .  

}  

This implementation is unproblematic, because the concrete variable Dat e dob pro-
vides the compiler with a starting point for interpreting the dot notation in expressions 
such as 

p. dob. day = 3;  

and the concrete variable dob by definition provides a method, for example, for set-
ting the abstract variable day. 
But suppose that the programmer decides on an implementation in which the dob 
details should be compacted into a single integer (equivalent to that discussed in sec-
tion 6), which does not include a concrete variable corresponding to the abstract vari-
able. Part of this implementation could be equivalent to that proposed for the Java 
version, e.g. 

i mpl  Per sonI mpl 2 of  Per son {  
 . . .  
st at e:  
 i nt  dat eOf Bi r t h;  / /  hol ds t he compact ed dat e of  bi r t h val ue 
i nst ance:  
 op Dat e dob( Dat e dob)  {  / /  t he set  met hod i mpl ement at i on 
  year ( dob. year ( ) ) ;  mont h( dob. mont h( ) ) ;  day( dob. day( ) ) ;  r et ur n dob;  
 }   

 enq Dat e dob( )  {  / /  t he get  met hod i mpl ement at i on 
  r et ur n Dat e. i ni t ( day( ) ,  mont h( ) ,  year ( ) ) ;  
 }  
 . . .  

/ /  i nt er nal  met hods f or  f or mat  conver si on 
 op voi d day ( i nt  day)  {  / /  set s i nt er nal  day f r om i nt  f or mat  
  dat eOf Bi r t h = dat eOf Bi r t h -  dat eOf Bi r t h % 100 + day;  
 }  
 enq i nt  day( )  {  / /  r et ur ns i nt er nal  day i n i nt  f or mat  
  r et ur n dat eOf Bi r t h % 100;  
 }  
 op voi d mont h( i nt  mont h)  { / /  set s i nt er nal  mont h f r om i nt  f or mat  
  dat eOf Bi r t h = 
   dat eOf Bi r t h – dat eOf Bi r t h % 10000 + mont h *  100 + dat eOf Bi r t h %100;  
  }  
 enq i nt  mont h( )  {  / /  r et ur ns i nt er nal  mont h i n i nt  f or mat  
  r et ur n ( dat eOf Bi r t h % 10000 -  dat eOf Bi r t h % 100)  /  100;  
 }  
 op voi d year ( i nt  year )  {  / /  set s i nt er nal  year  f r om i nt  f or mat  
  dat eOf Bi r t h = year  *  10000 + dat eOf Bi r t h % 10000;  
 }  



 

 enq i nt  year ( )  {  / /  r et ur ns i nt er nal  year  i n i nt  f or mat  
  r et ur n dat eOf Bi r t h /  10000;  
 }  
}  

However, as this stands, there is still a problem when the client attempts to access a 
method (or abstract variable) of the nested abstract variable Dat e dob, because this 
cannot be located from a concrete variable, and in fact there is no equivalent to these 
methods. Consequently, if an abstract variable which has a structured type is given a 
non-standard implementation, this must include not only the set and get methods, but 
also an implementation of each of the public methods of the nested type. 
Timor allows these methods to be implemented by allowing the dot notation to appear 
within a method name in an implementation which includes non-standard implemen-
tations of an abstract variable without a corresponding concrete variable. Thus an 
implementation of Per son which includes a non-standard implementation of the ab-
stract variable Dat e dob must also include implementations for the set and get meth-
ods dob. day, dob. mont h, dob. year  as well as for the method dob. r eset , e.g. 

i mpl  Per sonI mpl 2 of  Per son {  
. . .  / /  as above pl us:  
i nst ance:  
 op i nt  dob. day( i nt  day)  { day( day) ;  r et ur n day; }  
 enq i nt  dob. day( )  { r et ur n day( ) ; }  
 op i nt  dob. mont h( i nt  mont h)  { mont h( mont h) ;  r et ur n mont h; }  
 enq i nt  dob. mont h( )  { r et ur n mont h( ) ; }  
 op i nt  dob. year ( i nt  year )  { year ( year ) ;  r et ur n year ; }  
 enq i nt  dob. year ( )  { r et ur n year ( ) ; }  
 op voi d dob. r eset ( )  { day( 0) ;  mont h( 0) ;  year ( 0) ; }  
}  

In the case of several levels of nesting, the dot symbol appears more than once in 
method names. 

9. Interpreting Dot Expressions 

The alternatives outlined above for implementing nested abstract variables imply that 
elements in a dot expression can in practice be interpreted either as concrete variables 
(values and references) or as the names of methods. The latter can appear without the 
usual parameter brackets (if they correspond to set or get methods of an abstract vari-
able) and they may include compound method names (such as dob. day in the last 
example). 
For the case where no implementations of types are used which provide implementa-
tions of compound method names, the interpretation of a dot expression is equivalent 
to that for a conventional class based OO language (and can be optimised accord-
ingly). However, the interpretation of dot expressions which potentially contain com-
pound names is somewhat more complicated. To help clarify what this involves we 
now sketch out a mental model, while emphasizing that this need not be the technique 
actually implemented in a compiler. 
To evaluate such a dot expression, an abstract variable x whose type X contains meth-
ods m1, m2, etc. is treated as a pair of set and get methods (cf. section 7.1): 

 op X x( X x) ;  
      enq X x( ) ;  



 

plus a set of nested methods x. m1, x. m2, etc. having the same parameter and result 
types as the original methods m1, m2, etc. In a standard implementation of x (cf. sec-
tion 7.2), these nested methods simply call the original methods on the concrete vari-
able x, while in a non-standard implementation these methods are explicitly provided 
by the implementor. If the abstract variable's type X itself contains abstract variables 
y, z, etc. (whose types Y and Z might again contain abstract variables, and so on), 
these variables are recursively "expanded" into corresponding sets of method pairs 
before the abstract variable x is expanded. 
To give a concrete example, the type Dat e defined in section 7.1 would be treated as 
having method pairs day, mont h, and year  as well as a single method r eset . Given 
that, the type Per son defined there would be treated as having a method pair dob plus 
nested method pairs dob. day, dob. mont h, and dob. year  as well as a single nested 
method dob. r eset . Finally, if another type Schi zo were defined as 

t ype Schi zo {  
 . . .  
 Per son p1,  p2;  
}  

this would be treated as having method pairs p1 and p2 (which might be called level 1 
methods) plus nested method pairs p1. dob and p2. dob (level 2 methods) plus doubly 
nested method pairs p1. dob. day, p1. dob. mont h, p1. dob. year , etc. (level 3 methods). 
Based on this mental model, the interpretation of arbitrary dot expressions can be 
described as follows. 
Using Java terminology, a dot expression in Timor is a primary expression whose 
primary prefix denotes an entity e of some type T, e.g., a variable, an explicit method 
call, or a nested dot expression surrounded by parentheses, each denoting either a 
value of type T or a reference to an object of type T. The corresponding primary suffix 
is a sequence of identifiers, each preceded by a dot, optionally followed by an argu-
ment list or an assignment operator and an arbitrary expression (the RHS of the as-
signment). In the latter case, the assignment operator is removed and the RHS of the 
assignment is transformed into a one-element argument list. If the identifier sequence 
is neither followed by an explicit argument list nor by an argument list resulting from 
such a transformation, an empty argument list is appended. 
To evaluate such a dot expression, the longest method name found in T that is a prefix 
of the given identifier sequence is chosen (where the length of a method name is de-
termined by the number of dots it contains). This method is invoked on the entity e, 
either with an empty argument list if its name is a proper prefix of the identifier se-
quence, or with the argument list following the identifier sequence if the method 
name is equal to the complete identifier sequence. In the latter case, the method's 
return value constitutes the value of the dot expression. Otherwise, it is treated as a 
new primary prefix, while the remaining sequence of identifiers becomes the corre-
sponding new primary suffix; for these, the evaluation just described is performed 
recursively. 
For the case where an implementation of a type contains compound names and this is 
the only implementation of the type in question, related dot expressions can be fully 
analysed at compile time. However, if a single program uses different implementa-
tions of the same type with different implementation techniques (e.g. one uses com-
pound names, one uses concrete variables to implement the methods of nested ab-
stract variables) then the interpretation of a dot expression can only be fully carried 
out by run-time code. This is likely to occur only in extremely unusual circumstances. 



 

We anticipate that in almost all practical cases a full compile time analysis will be 
possible, since the technique which we have proposed for implementing abstract vari-
ables is likely to be used only in unusual situations (such as the implementation of a 
Per son database, as discussed in the next section). 

10. Discussion 

In terms of the trivial example which we have used throughout the paper it may ap-
pear that the issue addressed is not a serious one. After all this example could have 
been much more easily managed simply by providing an implementation of Dat e that 
uses an integer representation internally. (In fact one of the strengths of Timor is that 
it allows a type to have multiple implementations in a straightforward way.) However, 
there are cases where it may be appropriate not to use such implementations in the 
implementation of an enclosing type. For example if a database of Per son objects 
were to be implemented in a write-through file in such a way that the only representa-
tion of each object in the memory were a key which allows the intended database 
object to be located and accessed, then there would be no representation whatsoever 
for the abstract variables except in the file. Such examples can be implemented in 
Java using the proxy with back reference technique, and they can be implemented in 
Timor, despite its value semantics, using the technique described. 
It may also appear that the approach leads to scalability problems, but in fact its scal-
ability properties are comparable to those in Java, where for each non-standard im-
plementation of an abstract variable that does not include a concrete variable of the 
same name an inner class (or static nested class) is required which implements all the 
same routines. (In the case that a Timor module includes several abstract variables of 
the same type which also use the same implementation, this can of course be shared.) 
On the other hand the approach is in principle more efficient than using Java proxies, 
as the overhead of creating and using extra proxy objects is avoided in Timor. 
Finally we point out that the issue which has been discussed is completely orthogonal 
to other aspects of implementing types in a non-standard way. For example in Timor 
there is no direct relationship to the issue of implementing complex types such as a 
stack of stack of persons in a non-standard way: a type can be defined (generically or 
not) and it can have many implementations. There is no problem in Timor in provid-
ing a special implementation of such a type, and this does not raise any of the issues 
discussed in this paper. 

11. Related Work 

Although information hiding is a widely acknowledged software engineering tech-
nique it is normally not cleanly incorporated into the object orientation paradigm, 
which has preferred the simpler class construct (which integrates a type and a single 
implementation) to a more rigorous approach which separates types and their (poten-
tially multiple) implementations. Techniques which are sometimes recommended as a 
means of providing multiple implementations for a type (such as abstract classes or 
Java interfaces as type definitions with their subclasses as implementations) fail to 
ensure that the full rigour of information hiding is achieved, and they have the disad-



 

vantage that the implementation classes themselves also introduce new types, which 
can for example tempt the programmer to introduce additional public methods and 
fields. But even when a programmer uses an abstract class or an interface as a type 
definition he must decide whether to export a variable or provide set and get methods. 
With Java interfaces he does not even have this choice: variables cannot be defined as 
part of an interface. This harmonises with the information hiding principle but not 
with the client's simple requirements of treating certain aspects of the interface in a 
natural way as exported data items. 
Because in Eiffel a parameterless function and an attribute (variable) are accessed in 
the same way (according to the "principle of uniform reference" [6]) it is possible to 
redefine a parameterless function declared in a superclass as an attribute in a subclass. 
Notice however that the reverse is not possible, since it would only be possible fully 
to implement an attribute declared in a superclass by means of two methods (i.e. a set 
and a get method) in a subclass. Hence the principle of uniform reference does not 
produce the same effect as a Timor abstract variable. 
In the language Sather abstract classes are used as type definitions which specify 
method signatures without implementations. In [7] this is motivated by the idea that a 
class may have different implementations in concrete classes. However, concrete 
classes which form the leaf nodes of the type graph can also be used as types. So 
called attributes are defined similarly to abstract variables in Timor, as a pair of set 
and get methods. If clients use a concrete class as a type, they may call the accessor 
routines, but attributes may also be used as if they were variables. In this case no 
problems arise with nested attributes or the dot notation because attributes may only 
appear in concrete classes, i.e. where the implementations are fixed as so called refer-
ence classes. As it is not possible to define attributes in abstract classes, the level of 
flexibility reached in Timor, where abstract variables can be defined in (nested) type 
definitions which can have multiple implementations, is not attained. 
In the programming language Theta [5] a more convincing attempt has been made to 
support the information hiding principle, by strictly distinguishing between types and 
their implementations. But types must be defined in terms of methods, i.e. there are 
no abstract variables. In implementations (which are not types), a shorthand notation 
is provided to implement simple set and get methods by declaring appropriate vari-
ables with implements clauses. This is convenient for the implementor but not for the 
client of a type. 
The programming language Tau [9] also provides rigorous support for the information 
hiding principle, allowing an interface (i.e. a type definition) to include "abstract 
instance fields" as members. As in Timor these correspond to get and set methods. In 
an implementation (which is called a class, but which in contrast to Java does not 
introduce a new type) this can be realised either as a concrete field or as a pair of 
methods. A client of the interface can access an abstract field syntactically as if it 
were a concrete field. As in Timor exceptions can be associated with the definition of 
abstract fields. 
In the languages mentioned above the dot notation is interpreted in the context of 
reference semantics. They all support the concept of abstract type definitions which 
may have multiple and easily interchangeable implementations. In this sense they 
share the information hiding aim of Timor. None of these languages provides a 
mechanism for re-implementing nested methods or abstract variables in a non-
standard implementation using the technique described in this paper, which is particu-
larly relevant for languages which support value semantics. 



 

Variables at the class interface defined as a pair of access methods which are auto-
matically available to manipulate the state of an object can be found in other lan-
guages too. For example in CLOS [10] such variables are known as slots. As these 
slots appear within a class definition they are concrete variables with a standard im-
plementation for their setters and getters, and they are by no means abstract in the 
sense of Timor. There is no dot notation  because syntactically the functional style of 
LISP is used. 

12. Concluding Remarks 

The paper has shown how Timor takes the final step in reconciling a rigorous inter-
pretation of the information hiding principle with unrestricted user convenience in the 
context of a language based on value semantics. On the one hand Timor fully supports 
the information principle, allowing any type to have multiple implementations (which 
are not themselves types). On the other hand, type definitions can, for the conven-
ience of client programmers, apparently include (or consist entirely of) exported vari-
ables, which can be accessed syntactically as if they are concrete variables. Yet even 
in such cases the information hiding principle is not violated, and the implementation 
programmer is given complete freedom to implement a type in any way which he sees 
fit (provided that it accords with the type specification). This remains true even if a 
type is itself defined in terms of nested abstract variables, which the client program-
mer apparently reaches using the dot notation and even if there are no real concrete 
variables corresponding to the steps in a dot expression. 
The basic technique is well known: a variable can be considered as equivalent to a 
pair of methods for setting and getting a value (or a reference). However, we have 
seen that when instances of such types are nested the reconciliation of the two con-
cepts is by no means as simple as might at first be thought, especially with respect to 
the interpretation of dot expressions. 
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