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Abstract

Unlike most objed oriented programming langueges
Timor, which has been designed to suppat component
development, replaces the dass construct with separate
constructs for defining types and their implementations
(which are not types). It also dstingushes between
behaviourally conforming subtyping and the inclusion of
behaviourally deviant interfaces in the definition of
derived types. The separation of types and
implementations smplifies a separation of subtyping and
subclassng, fadlitating the re-use of implementations of
one type to implement other, unrelated types. A further
technique dlows a type to be mapped onto an urrelated
type with different method names, such that the latter's
implementations can also be re-used to implement the
former. The paper concludes by outlining a substantial
example based on the Timor Collection Library'.

Keywords: Software comporent, type, subtyping, subclassng,
polymorphism, behavioural subtyping, base type, derived type,
code re-use, code mapping.

1 Introduction

One of the most significant differences between objed
oriented and aher programming langueges is their
explicit suppart for subtyping. The basic ideais that a
type (the supertype) can be used as a base for defining a
new type (the subtype). The subtype can redefine existing
methods of the supertype axd can add new members.
Instances of subtypes can be asdgned to variables of the
supertype. This use of subtypes is known as inclusion
polymorphism (Cardelli and Wegner, 1985.

Becaise eisting methods can be redefined, the behaviour
of a subtype instance ca be quite different from that of
its supertype, even when used pdymorphicdly as if it
were a instance of the supertype. It is therefore useful to
distingush between behavioural and non-behavioural
subtypes. Liskov and Wing (1994 have developed a
behavioural notion of subtyping which differs from
ealier definitions of the subtype relationship in that
attention is paid not only to the redefinition of existing
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methods but also to the significance of new methods,
which can affea the behaviour of existing methods in the
presence of aliasing and also in a general computational
environment that allows multiple users to share mutable
objeds.

This grong definition of behavioural subtyping excludes
some caes of subtyping which at first sight may appea
to be behavioural, for example the relationship between a
type Queue (as the supertype) and a type Doubl eEnded-
Queue (as the subtype). If a programmer uses a Doubl e-
EndedQueue instance & a Queue instancein his program it
will, assuming that it has been defined and implemented
in a reassonable way, work perfedly well asa Queue in his
isolated context. But if the same objed instance is
accessd via other variables as a Doubl eEndedQueue (e.0.
using a method which inserts entries at the "wrong" end)
it can exhibit properties which do not conform behaviour-
ally with the usual definition of a Queue type.

On the other hand there ae many cases where a
programmer has no intuitive expedation that a subtype
will exhibit the same behaviour as a supertype. For
example a supertype Button defined for use in a
graphicd user interfacemay have an operation push, the
behaviour of which is gedficdly intended to vary
depending on the kind of button which it adually is, as
defined in more detail in particular subtypes.

Definitions of the subtype relationship can also crede
problems at the implementation level. For example, in
classbased languages the dassconstruct is typicdly used
to achieve both subtyping (i.e. a type relationship) and
subclassing (a mde re-use relationship), athough these
are often not compatible with ead other, cf. e.g. Cook et
al. (1990. For example the mde of a supertype Queue can
eally and effedively be re-used in a subtype Doubl e-
EndedQueue, but the fad that this is not a behaviourd
subtype suggests that in some gplications the subtype
relationship should be avoided; however this credes the
dilemmathat the codecannot be re-used.

In this paper we describe how such isaies are handled in
the programming language Timor, which is currently
being designed at the University of Ulm in Germany. The
motivation for Timor is to develop an objed-oriented
language which is auitable for defining and implementing
software cwmponents, whereby the word component here
is to be understood in the origina sense described by
Mcllroy (1968 (who used a sine routine & his example).
Timor is intended to be suitable for developing software
components of various $zes, including quite small
components corresponding to fairly trivial classes in
typicd objed oriented applicaions. This does not



predude an intention also to suppatt the development of
larger components, as the word is frequently understood

today.

Timor suppats not only singe but also multiple
inheritance, both at the type and implementation levels.
However, in the present paper discusson is restricted to
singe inheritance, which is adequate to ill ustrate the three
main issues which we wish to discuss In sedion 2 we
describe the separation of types and implementations,
which in most objed oriented languages can only be
simulated via inheritance (at the cst of introducing
unintended types). Sedions 3 and 4 autline the differing
treament of behavioural and non-behavioural subtypes.
Sedions 5 to 8 show how code can be flexibly re-used to
implement types which are not necessarily related to ead
other. An example is provided in sedion 9. Sedion 10
provides a omparison with related work and sedion 11
summarises the paper, adding some final remarks. In later
papers we shall describe how these ideas are extended to
encompass multiple (and repeaed) type ad
implementation inheritance

2 Distinguishing Types and | mplementations

In a component development environment it is important
to be ale to develop dfferent implementations for the
same type (Figure 1). For example atype Li st might be
implemented as an array, a linked list, etc. This smple
requirement led us to replace the dass concept with a
concept which distinguishes between types and their
implementations.

mplementation 2
Implementation 1

Figure 1: A Type with Multiple Implementations

A Timor type is defined as foll ows™:
type Queue {
maker init(int maxSize);
op void insertAtBack(ELEMENT e) throws Full Ex;
op ELEMENT renoveAt Front () throws EnptyEx;
enq ELEMENT front() throws EnptyEx;
enq int length();

! The qualifier maker introduces an explicitly named
congtructor. The qualifier op introduces an operation
(which can modify the state of an instance of the type),
eng introduces an enquiry (which cannot modify the
instances gate). The distinction between op and eng
methods is important for example for defining qualifying
types with bradket routines, cf. Keedy et al. (1997,
Kealy et a. (2000, but is not significant for the present
discusson. The type ELEMENT can be thought of as any
relevant type. Timor supparts a generic oconcept along the
lines described in Evered (1997), Evered et al. (1997), but
again this is not diredly relevant to our discusson and is
not described here.

}
This can have several implementations. Here is an array-
based implementation:

impl ArrayQueuel of Queue {
ELEMENT[] theArray;

int maxSize;

int size = 0;

int front = 0;

int back = 0;

maker init(int maxSize){
t hi s. maxSi ze = naxSi ze;
theArray = new ELEMENT[ maxSi ze] ;
}
op void insertAtBack(ELEVMENT e) throws Full Ex {
if (size < maxSize)
{theArray[ back] = e;
if (back == maxSize) back
el se throw new Ful | Ex();

back++;

= 0; size++;}

}
op ELEMENT renpveAt Front () throws EnptyEx {
if (size > 0)
{ELEMENT tenp = theArray[front];
if (front == maxSize) front = O;
return tenp;}
el se throw new Enpt yEx();

front ++;
size--;

}

enqg ELEMENT front() throws EnptyEx {
if (size > 0) return theArray[front];
el se throw new Enpt yEx();

}

eng int length() {return size;}

}

There ae many other posshble implementations of Queue,
which could be written as sparate implementation
components and given different names. The important
point here is that the behaviour of different
implementations of a type must be equivalent to eat
other. We cdl this behavioural equivalence. It differs
from behavioura conformity in that a subtype
relationship is not involved, i.e. the behaviour of
members cannot be re-spedfied and new public members
cannot be added in an implementation.

3  Defining the Behaviour of Components

In a situation where components are developed and used
by different groups of programmers it isimportant that all
concerned have a ¢ea understanding of how components
behave. We have just introduced the term behavioural
equivalence and have drealy referred in the introduction
to the notion of behavioural conformity as a cncept
associated with subtyping.

Formally, both of these notions must be defined in terms
of aformal spedficaion. We intend to add a spedfication
technique in later versions of Timor, but in the first
version behavioural equivalence ca only be defined
intuitively, as the equivaent fulfilment by different
implementations of a type definition (with the help of
comments). Similarly behavioural conformity has initially
to be understood intuitively, in the spirit of the Liskov
and Wing definition.

Suppase, however, that we dready had a spedficaion
technique (and that it were powerful enough to describe
the behaviour of types to a degree of detail and acaracy
that we neal). This would mean that different
implementations of a type could only be described as
behaviourally equivalent provided that they fulfil the



spedficaion for the type. Similarly subtype
spedficaions could only be described as behaviourally
conforming in so far as they fulfil the spedfication of the
supertype. Put another way, an "implementation” of a
type would not be avalid implementation if it did not
fulfil the spedficaion of the type, and a "subtype"
spedficaion would not define a behaviouraly
conforming subtype if it did not conform with the
spedfication of the supertype.

We a@aume in this context that a formal spedficaion
would be predse in the sense of stating requirements
which have to be fulfilled, but at the same time it could
leare freedom for different adua behaviours to fulfil
these requirements. Thus for example an abstrad type
Col lection might spedfy non-deterministicdly that
following an i nsert operation the mlledion size would
either be increased by one or would not change. In this
way a type Bag (which accepts duplicaes), a type Set
(which ignores duplicates) and a type Table (which
throws an exception when an attempt is made to insert a
duplicate) could be behavioural subtypes of the type
Col l ection. In some caes it can adso be gpropriate to
provide a null spedficaion, in which case any
syntadicdly corred implementation fulfils the
spedficaion and any syntadicdly corred subtype
definition conforms behaviourally with its supertype.

4 Derived Types

Timor suppats the definition of types on the basis of
other types in a form which resembles the mnventional
objed-oriented style of subtyping. Such types are known
as derived types (Figure 2).

Derived Type

Figure 2: A Base Type with a Derived Type

In definitions of derived types a distinction is drawn
between genuine subtyping, based on the behavioura
notion, and the use of a base type simply as a mechanism
for including interface definitions in a new type without
implying a subtyping relationship. Where behavioural
conformity is intended the supertype is introduced by the
keyword ext ends, e.g.

type Collection {

op void insert(ELEMENT e) throws DuplicateEx;
}
type Bag
extends Col | ection
redefines {
op void insert(ELEMENT e);
/1 the insert nethod for a Bag
/1 does not throw a Dupli cateEx.

{ /* no new nethods in this exanple */}

A non-behavioural relationship is introduced by the
keyword i ncl udes, e.g.

type Doubl eEndedQueue

i ncl udes Queue {

maker init(int maxSize);

op void insertAtFront ( ELEMENT e) throws Ful |l Ex;

op ELEMENT renoveAt Back() throws EnptyEx;

eng ELEMENT back() throws EnptyEx;
}

Because the inclusion of a base type in another type does
not imply a subtyping relationship, component instances
of the derived type canot be asdgned to variables of the
base type. Thus a component of type Doubl eEndedQueue
cannot be assgned to a Queue variable, but a component
of type Bag can be asdgned to a variable of type Col | ec-
tion.

If a method o a supertype is changed in a derived type
(for extensions in a behaviourally conforming manner)
this must appea in aredefines clause. In principle this
requires a new forma spedficaion of the method(s)
involved, but in the first version of Timor thisis dgrictly
speaing only relevant for singe inheritance’ in cases
where some exceptions defined in a method d the
supertype canot be thrown in the derived type, as is
ill ustrated in the type Bag. Since similar changes can be
defined for methods of included types, these may also
appea inar edef i nes clause.

As the intended behaviour of a method can in principle
change in the first version of Timor even if the signature
does not, programmers must list such members in a
redefines clause even where the signature does not
change. In pradice the redefines clause can be viewed
as a list of methods which in an implementation can be
overridden in the objed oriented sense. Such changes
must conform behaviouraly with an ext ends supertype
but not with an i ncl udes base type. We aticipate that
some (though rot exhaustive) cheding of behavioural
conformity for methods appeaing in aredefi nes clause
may be pasgble when a spedfication technique is added.

5 Implementing Types

An implementation of a type is considered to be a
implementation of all the members of the type. This can
take several forms:

(a) A type (including a derived type) can have acom-
pletely new implementation (Figure 3).

plementation

Derived Type

Figure 3: An Independent | mplementation of a Derived
Type acording to the Information Hiding Principle

2 Timor supparts multi ple type inheritance, i.e. more than
one type can appea in the extends and/or incl udes
clauses. In that case the redef i nes clause is also used for
the clarificaion of name collisions.



Thisiswell suited to the information hiding principle
(Parnas, 1972. The new implementation of the meth-
ods of supertypes must conform with the
spedfications of the supertypes (where relevant as
redefined in the derived type). The implementation of
new and redefined members must conform with the
spedficaion of the derived type.

(b) A type (including a derived type) can re-use
implementations of other types (indicaed by the
keyword reuses). In contrast with standard OO
pradice asubtype relation between the type of the
new implementation and the types of its re-used
implementations need not (but can) exist. Thus code
re-use car be completely demupled from subtyping
and from the inclusion of interfaces.

A reuses clause can designate a spedfic
implementation to be reused (Figure 4). This
typicdly refleds the mnventional objed oriented
style of code inheritance, asisill ustrated in sedion 6.

Implementation of
some type

This relationship

need not exist Implementation of

another typere-using it

Another Type

Figure 4: Reuse of a Spedfic Implementation

Alternatively, it can designate atype, any of whose
implementations can be re-used (at the level of the
public members) (Figure 5). This leads to a quite
different style of code re-use, ill ustrated in sedion 7.

[ Implementation 3
[ 1mplementation 2
Implementation 1

Another Type
Implementation of another
type re-using any of its
implementations

Figure 5: Reuse of any Implementation of a Type

(c) A type can be mapped to another type, and in this
way re-use its implementations, again without
implying a type relationship (Figure 6). This is
ill ustrated in sedion 8.

Implementation 3
Implementation 2
Implementation 1

Implementation 1
A Type

mapped to it
for code re-use

Figure 6: Mapping a Type  another Typ

Finaly, Timor aso allows the posshility of typeless
implementations. These ae freestanding
implementations which have no effed on the type system,
but which can be fredy re-used in the implementations of

types.

6 Simulating Subclassing via Code Re-use

In sedion 2 we illustrated an implementation Array-
Queuel of atype Queue and in sedion 4 we showed how
the type Queue might have a (non-behavioural) derived
type Doubl eEndedQueue. Here an implementation of
Doubl eEndedQueue reuses the implementation Array-
Queuel in a way which resembles the mnventional code
inheritancetechnique (i.e. subclassng):
impl ArrayDEQL of Doubl eEndedQueue
reuses ArrayQueuel {
op void insertAtFront (ELEMENT e) throws Ful |l Ex{
if (size < maxSize)
{front--; if (front < 0) front = maxSi ze - 1;
theArray[front] = e; size++;}
el se throw new Ful | Ex();

}

op ELEMENT renpveAt Back() throws EnptyEx{

if (size >0)
{back--; if (back < 0) back = maxSize - 1;
size--; return theArray|[back];}

el se throw new Enpt yEx();

}
enqg ELEMENT back() throws EnptyEx {

if (size > 0)

{int i = back - 1;
if (i <0) i = nmaxSize - 1;
return theArray[i];}

el se throw new Enpt yEx();

}
}

In this example, the implementation of the derived type
nominates an implementation of the type which is to be
reused (Figure 7). All the methods of a re-used
implementation whose healers match the methods of the
type being implemented are "inherited" (along with any
data structures and methods which they need); any other
methods are ignored.

| mplementation:
ArrayQueuel

| mplementation:

Derived Type:
DoubleEndedQueue

Figure 7: Simulating Conventional Subclassng

Here we see one of the alvantages of explicitly naming
congtructors (rather than uwsing the type name & a



constructor name, as in Java). In appropriate caes — as
here with resped to the wnstructor from ArrayQueuel
defined in sedion 2 — a @nstructor can be re-used in an
implementation of a different type without having to be
separately coded (and where gpropriate explicitly cdl a
constructor of the supertype).

The nomination of a spedfic implementation of some
other type for re-use is typicd in cases where cde re-use
follows the mnventional OO inheritance paradigm of
incrementally inheriting from base types (whether or not
the inheritance is behavioural), where accssis nealed to
data structures. While this dyle of code re-use is possbhle
in Timor, it is not the preferred style, as it violates the
information hiding principle and it does not result in
modular components. We now illustrate the dternative
style, which is possble becaise wde re-use can be
deaoupled from type relationships.

7 Code Re-Usewithout Type Relationships

Becaise for subtyping reasons Doubl eEndedQueue Was
defined by including Queue rather than by extending it,
the two types are not related from the polymorphic
viewpoint. In pradice Doubl eEndedQueue could therefore
have been defined as a separate type, asfoll ows:

type Doubl eEndedQueue{

maker init(int nmaxSize);

op void insertAtFront ( ELEMENT e) throws Full Ex;
op void insertAtBack( ELEMENT e) throws Ful | Ex;
op ELEMENT renpveAt Front () throws EnptyEx;

op ELEMENT renoveAt Back() throws EnptyEx;

eng ELEMENT front() throws EnptyEx;

enq ELEMENT back() throws EnptyEx;

enq int length();
}

Regardless whether Doubl eEndedQueue was defined as a
separate type or as a derived type, it has the &ove
interface and it can be treded as a separate type for im-
plementation purposes. (This holds also for a behav-
iourally conforming subtype: any type can be imple-
mented using any of the techniques described in sedion
5, regardlessof its type relationships.)

A dignificent advantage of implementing any type
without reusing a spedfic implementation of another type
(i.e. without using the technique ill ustrated in sedion 6) is
that this can be done in conformance with the information
hiding principle. The type Doubl eEndedQueue could have
several such implementations, e.g. ArrayDEQ, Linked-
Li st DEQ which do not re-use other code. Given such
independent implementations, all of them could
potentially be re-used to provide implementations of
Queue. The following ill ustrates how this is achieved in
Timor:

impl Queuel of Queue

reuses Doubl eEndedQueue

{/* no re-inplenmented nmethods */}

The reuses clause in this example nominates a type
rather than an implementation, indicaing that any
implementation of the type can be re-used (Figure 8).

This has the alvantage that for any new implementation
of Doubl eEndedQueue there is automaticdly a new
implementation of Queue. The basic rule is that any
method which appeas in the re-used type with an

identicd signature is re-used, unlessit is overridden in the
new implementation®.

| | mplementation:
Implementation 1:  f-inkedListDEQ
ArrayDEQ
Type
DoubleEndedQueue

This relationship
need not exist

mplementation 1:
Queue 1

Figure 8: Reusing any Implementation of a Type

Some methods of Doubl eEndedQueue (€.9. insertAt-
Front ) cannot be explicitly invoked by clients of Queue.
Whether such redundant methods (and fields) are
removed from the implementation Queue1 depends on the
compiler (or passbly the component developer). They
can of course only be removed if an anaysis by the
compil er shows that they genuinely are redundant (e.g. if
methods are not invoked from the methods which are
required).

8 Mapping Typesonto Other Types

Implementations of the type Doubl eEndedQueue could be
easly re-used to implement unrelated types which do not
have matching member definitions in their types. For
example atype st ack might be defined as foll ows:

type Stack {

maker init(int maxSize);

op void push(ELEMENT e) throws Full Ex;

op ELEMENT pop() throws EnptyEx;

enq ELEMENT top() throws EnptyEx;

enq int length();

}

To alow the re-use of implementations of Doubl e-
EndedQueue for stack the following map can be
provided:

map StackMapl from Stack to Doubl eEndedQueue {
op void push(ELEMENT e) => insertAtFront;

op ELEMENT pop() => renoveAtFront;

eng ELEMENT top() => front;

}
Members of the mapped type which aready match (e.g.
in this example the | engt h method and the @nstructor)
can be omitted from the map. Unmapped members must
be implemented in some other way. When such a map
exists, any implementation of the map's destination type
(here Doubl eEndedQueue) can be used to implement the
mapped type, e.g.
impl Stackl of Stack

reuses Doubl eEndedQueue via StackMapl {}

Thisrelationship isill ustrated in Figure 9.

% Overriding is not ill ustrated in our examples, but it does
not differ significantly from other overriding techniques
which allow the @de of an overridden method to be
invoked usinga super construct.



I Implementation:

Implementation 1:  [-inkedListDEQ
ArrayDEQ TTITITIIT Implementation 1:
T Stackl
ype
DoubleEnded- Stack- Type
Queue Mapl Stack

Figure 9: Mapping a Stadk onto a Double Ended Queue

In the first version of Timor maps are kept simple, i.e.
there must be an exad signature match; only the names of
members and of parameters may differ between a mapped
member and the member onto which it ismappel.

9 Larger Scale Application

We now briefly describe aredistic library of types and
implementations, developed using the wncepts of
behavioural derived types and code re-use. This is the
Timor Colledion Library, the design of which is based on
one co-author's doctoral thesis (Menger, 2000).

The dam was to provide alibrary of colledion types and
implementations which  orthogonally suppat  the
foll owing properties:

(8) handlingthe duplication of elementsin threeforms:

— colledions which allow duplicae dements to be
inserted,

— colledions which ignore dtempts to insert
dupli cétes,

— colledions which signal as exceptions attempts
to insert dupli cates.

(b) handlingthe ordering of elementsin threeforms:
— unordered,
—  user-ordered,

— automaticdly sorted on the basis of user-defined
criteria.

This leads to nine (three times threg concrete types,
which are organised in a behaviouraly conforming
hierarchy that aso includes four abstrad types
(Ool | ection, Dupl i cat eFreeCol | ecti on,
User Or der edCol | ecti on, SortedCol | ection). Multiple
type inheritance (not described in this paper) was used to
achieve a maximum of behavioural subtyping among
related types.

Implementing this library using the re-use technique
primarily involves coding only two of the concrete types:

—  Li st duplicates all owed, user-ordered; and
— SortedLi st : duplicaes all owed, sorted.

Furthermore implementations of the type List can be
almost completely re-used in implementations of the type
Sort edLi st . In addition two typelessimplementations are
needed to provide trivialy redefined routines which
bradket the insert routines of List and SortedList.
These chedk for attempts to insert duplicate dementsinto
appropriate types, in one case throwing an exeption.

To provide dternative implementations of the enitire
library (as arrays, linked lists, doubly linked lists)

requires only a new implementation of Li st and (a few
methods of) SortedList. The implementations which
cary out duplicae cedking can be re-used with any
implementations of the List and SortedList types.
Customised implementations of some types can of course
be provided separately, e.g. an implementation of Set
(duplicaes ignored, unordered) and of Tabl e (duplicaes
signalled, unordered) as bit lists, for cases where the
element typescan be enumerated.

Theresult is afully orthogonal, behaviourally conforming
colledion library with a maximum of code re-use & well
as conformance with the information hiding principle. It
can eally be extended by users to suppart their own
spedalised types, and it can be quickly re-implemented
using new data structures.

10 Related Work

Code reuse via inheritance is often considered to be the
most important benefit of objed oriented programming.
But ealier OO languages, where dasss unify types and
their implementations (e.g. Eiffel, C++), suffer from the
problem that subtyping and subclassng do not always fit
well together, cf. eg. LaLonde ad Pugh (199)).
Nevertheless even without language suppart for a dea
separation between types and implementations, it is
sometimes possble to achieve asurprisingly high degree
of separation between types and subtyping on the one
hand and implementations and code reuse on the other
hand.

Taking C++ (Stroustrup, 1997 as an example, "pure”
abstrad classes (i.e. classes containing only pure virtual
functions) can be used to model a type hierarchy, while
normal classes can be used to huild an independent
implementation  hierarchy. Private or proteced
inheritance, which prevents a subtype relationship
between base ad derived classes, can be used to
represent the implements and reuses relationships of
Timor. In combination with access or using dedarations,
even the includes relationship can be simulated, without
creding a subtype relationship. But as C++ has not been
designed to suppart such a dean separation of types and
implementations, its enforcement by the programmer is
somewhat artificial and more or less tedious. Espedally
in ceses where an implementation of a mpletely
unrelated type is to be reused to implement a type, it is
necessary to explicitly merge the astrad methods of the
type being implemented with the crresponding methods
of the reused implementation by providing definiti ons of
the methods which forward their cdls to this
implementation.  Furthermore, simply reusing all
implementations of a type to implement another type,
requires smilar method cefinitions which delegate their
work to the methods of the reused type.

For more than a decale the relationship between
subtyping and subclassng hes been discussed in the
acalemic aea ad languages (e.g. Sather, Signatures and
Brew, Java, Theta, Tau) have been put forward which
attempt to separate types and implementations with the
aim of improving bath.



Sather (Stoutamire and Omohurdro, 1996 is a
descendant of Eiffel (Meyer, 1992 with a fundamentally
changed type system. Different kinds of relationships
may coexist in a single hierarchy, which has an abstrad
class as its root. Abstrad classes (without code) model
type relationships, while @ncrete dasses (which may
only appea in led nodes) are subtypes of the éstrad
clasges) which they implement and are themselves types.
Furthermore, abstrad clases can be aded
retrospedively to the hierarchy as supertypes of existing
classes. Code reuse is achieved by means of an inclusion
medhanism, which copies code & the sourcelevel. Partial
classes are dasses which can contain code but which are
not aswociated with a type; they can neither be
instantiated nor used for variable dedarations. Including
code from other clases does not imply a type
relationship. Static type safety is maintained by means of
contravariant type rules. This approach suffers from the
fad that types and implementations are not fully
demupled from ead other, i.e. concrete dasses are dso

types.

Signatures (Baumgartner and Rus, 1995 have been
suggested (and implemented in the GNU C++ compil er)
as an extension of C++ which supparts the separation of
types and implementations more diredly and naturaly.
The basic ideais that signatures, like @strad classs in
Sather, represent types which can be implemented in
clases, aso with the posdbility that they can be
retrospedively spedfied. However, signatures cannot
serve & complete type definitions, as they may not
contain constructors. Unlike Sather they are not part of
the dasshierarchy. But as sgnatures have been designed
as a mnservative extension of C++, they are unable to
overcome inherent deficiencies of the base language,
espedaly the fad that classes are dso types. With Brew
(Baumgartner et a., 1996, the signature @ncept has
been redized in a Java-based language.

Javainterfacetypes (Arnold et al., 2000 have simil arities
with both Sather's abstrad classes and with signatures.
However, the separation of interfaces from their
implementations is more explicit and easier to understand
than the Sather approad, becaise, as with signatures,
interfaces are not part of the dasshierarchy. On the other
hand not only are dasses also types, but subclassng also
impli es a subtype relation. Principles guch as information
hiding and programming to interfaces can easly be
circumvented by using classes without giving up subtype
polymorphism (as in Sather). Nevertheless the Java type
system is much simpler than that of Sather. Like
signatures, Java interfaces may not contain constructors.
In contrast with both Sather and the signatures approad,
interfaces may not be defined retrospedively.

In Theta (Liskov et a., 1994 types are deally
digtingushed from clases, and the idea of multiple
implementations is supparted. Subtyping occurs between
types, while dasses ae not types but only
implementations of types, so that code reuse is as flexible
as in Sather. Constructors may not appea on the type
interface thereby hindering strict programming to
interfaces and aso induction based type verificaion
(because there is no starting point). Nevertheless the

clea distinction between types and implementations is a
significant step forward.

Tau (Schmolitzky, 1999 is a radicd adaptation of Java
which redises the notion of abstract typing. The
approach is dmilar to that found in Theta, in that
subtyping occurs between types (cdled interfaces in
Tau). Classes are not types, and subclasing does not
imply any type relationship. Tau also supparts typeless
clases (smilar to partial classes in Sather), which are
intended only for code reuse. A dedsive further step is
taken in Tau, namely that, in contrast with previous
languages, type interffaces can include abstract
congtructors.

Timor is based on the concept of abstrad typing in Tau
and adds ©me new fedures which are intended to be
useful for developing software components. It emphasises
the significance of behavioural subtyping by permitting a
programmer to define derived types in a subtype
relationship (where behavioural conformity is intended),
while dso alowing type interfaces to be included in
derived types without implying such a relationship. Both
forms of derived types allow inherited methods to be
redefined, but they must be listed in aredefi nes clause,
thus making it easy to identify the “hot spots’ of an
implementation. Code reuse can be adieved in a similar
manner to Tau, in a way which resembles subclassng.
However, Timor goes further than Tau by allowing atype
to be named in a reuses clause, thereby indicding that
any implementation of that type can be re-used, with the
advantage that the information hiding principle can also
be preserved between implementations. This applies also
to the mapping technique, which alows one type
interface to be mapped onto ancther for code reuse
purposes.

11 Summary and Final Remarks

The paper has briefly described how the new
programming languege Timor* handles a number of
isales relating to types and subtyping as well as
implementations and code re-use. Aspeds relating to
multiple type inheritance and multiple cde re-use have,
however, not been discussed, as these raise adifferent set
of issues which will be discussed in a future paper.

Motivated by the idea of regarding objed oriented units
potentially as general purpose wmponents for use in a
wide range of applicdion systems, the language
distingushes between types and their implementations
(which are not also types). This division of the traditional
class construct into separate units has a number of
advantages. From the viewpoint of component
development and use it alows a single type to be
implemented in different ways (e.g. refleding different
time ad gpace tradeoffs), and these separate
implementations can be sold/bought as sparate
components. Thus the eistence of multiple
implementations for a type does not necessarily imply

* The arrent state of Timor isthat it is neaingthe end of
the design stage. No compil er is yet avail able.



that more than one implementation will be used in a
particular applicaion program or system®. It does,
however, help to simplify some of the problems
associated with subtyping and subclasgng.

A user of components representing types and their
implementations neads to understand how these ae likely
to behave, espedaly with resped to the issue of
subtyping. In derived types, which represent a variation
of the traditional form of subtyping, a distinction is drawn
between extending a supertype in a behaviourally
conforming manner and including base types to which the
derived type need not conform behaviouraly. In the
absence of a spedfication technique in the first version of
Timor, the behavioural requirement of extension subtypes
must be regarded as a statement of intent by the designer
rather than a feaure which can be deded by the
compil er. Neverthelessthere is provision for ar edef i nes
clause in derived types which allows the designer to
indicae where behavioural changes occur.

At the implementation level Timor suppats the
conventional code inheritance technique (using a r euses
clause which typicdly nominates an implementation to be
re-used). However, as the example in sedion 6 shows,
this technique dfedively encourages programmers to
circumvent the information hiding principle by exporting
major data structures. This can be asoided by using the
reuses Clause to designate atype, which neal not be a
supertype of the type being implemented. As described in
sedion 7, the information hiding principle is thereby
preserved and any implementation of the designated type
isallowed to be re-used.

Finaly a mapping technique is introduced (sedion 8)
which enhances the posshilities of code re-use by
allowing methods of one type to be mapped onto methods
of another type such that the mapped type can be
implemented by re-using implementations of the type
onto which it is mapped. At present this technique
requires an exad match of signatures (except the names
of methods and their parameters), but we anticipate that
the technique will be made more flexible in future
versions of Timor.

The example of the Timor Colledion Library, briefly
outlined in sedion 9, provided us with confirmation of
our view that it is worthwhile in the design of a new
language to keegp arthogonal ideas (such as types and
implementations, subtyping and subclassng, behavioural
conformity and behavioural divergence) separate, even if
the languege gets marginaly larger. It is not a significant
problem later to all ow short-cuts for simple caes, such as
allowing "classes’ in the form of implementations which
implicitly define their own types.

In summary Timor supparts idess which have dready
been proven in other languages and adds new ones which

® Techniques used in Timor for handling the mexistence
of different implementations in a single program and the
seledion of particular implementations are not discussed
in this paper, as these themes are not relevant to the issues
of subtyping which the paper addreses.

are onsidered to be useful for
implementing software components.

Acknowledgement: Spedal thanks are due to Dr. Mark
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