
Support for Subtyping and Code Re-use in Timor

J. Leslie Keedy, Gisela Menger, Christian Heinlein
Department of Computer Structures

University of Ulm
89069 Ulm, Germany

{keedy,menger,heinlein}@informatik.uni-ulm.de

Abstract

Unlike most object oriented programming languages
Timor, which has been designed to support component
development, replaces the class construct with separate
constructs for defining types and their implementations
(which are not types). It also distinguishes between
behaviourally conforming subtyping and the inclusion of
behaviourally deviant interfaces in the definition of
derived types. The separation of types and
implementations simpli fies a separation of subtyping and
subclassing, facilit ating the re-use of implementations of
one type to implement other, unrelated types. A further
technique allows a type to be mapped onto an unrelated
type with different method names, such that the latter's
implementations can also be re-used to implement the
former. The paper concludes by outlining a substantial
example based on the Timor Collection Library..

Keywords: Software component, type, subtyping, subclassing,
polymorphism, behavioural subtyping, base type, derived type,
code re-use, code mapping.

1 Introduction

One of the most significant differences between object
oriented and other programming languages is their
explicit support for subtyping. The basic idea is that a
type (the supertype) can be used as a base for defining a
new type (the subtype). The subtype can redefine existing
methods of the supertype and can add new members.
Instances of subtypes can be assigned to variables of the
supertype. This use of subtypes is known as inclusion
polymorphism (Cardelli and Wegner, 1985).

Because existing methods can be redefined, the behaviour
of a subtype instance can be quite different from that of
its supertype, even when used polymorphically as if it
were an instance of the supertype. It is therefore useful to
distinguish between behavioural and non-behavioural
subtypes. Liskov and Wing (1994) have developed a
behavioural notion of subtyping which differs from
earlier definitions of the subtype relationship in that
attention is paid not only to the redefinition of existing

Copyright © 2002, Australian Computer Society, Inc.
This paper appeared at the 40th International Conference
on Technology of Object-Oriented Languages and
Systems (TOOLS Pacific 2002), Sydney, Australia.
Conferences in Research and Practice in Information
Technology, Vol. 10. James Noble and John Potter, Eds.
Reproduction for academic, not-for profit purposes
permitted provided this text is included.

methods but also to the significance of new methods,
which can affect the behaviour of existing methods in the
presence of aliasing and also in a general computational
environment that allows multiple users to share mutable
objects.

This strong definition of behavioural subtyping excludes
some cases of subtyping which at first sight may appear
to be behavioural, for example the relationship between a
type Queue (as the supertype) and a type DoubleEnded-
Queue (as the subtype). If a programmer uses a Double-
EndedQueue instance as a Queue instance in his program it
will , assuming that it has been defined and implemented
in a reasonable way, work perfectly well as a Queue in his
isolated context. But if the same object instance is
accessed via other variables as a DoubleEndedQueue (e.g.
using a method which inserts entries at the "wrong" end)
it can exhibit properties which do not conform behaviour-
ally with the usual definition of a Queue type.

On the other hand there are many cases where a
programmer has no intuitive expectation that a subtype
will exhibit the same behaviour as a supertype. For
example a supertype Button defined for use in a
graphical user interface may have an operation push, the
behaviour of which is specifically intended to vary
depending on the kind of button which it actually is, as
defined in more detail in particular subtypes.

Definitions of the subtype relationship can also create
problems at the implementation level. For example, in
class-based languages the class construct is typically used
to achieve both subtyping (i.e. a type relationship) and
subclassing (a code re-use relationship), although these
are often not compatible with each other, cf. e.g. Cook et
al. (1990). For example the code of a supertype Queue can
easily and effectively be re-used in a subtype Double-
EndedQueue, but the fact that this is not a behavioural
subtype suggests that in some applications the subtype
relationship should be avoided; however this creates the
dilemma that the code cannot be re-used.

In this paper we describe how such issues are handled in
the programming language Timor, which is currently
being designed at the University of Ulm in Germany. The
motivation for Timor is to develop an object-oriented
language which is suitable for defining and implementing
software components, whereby the word component here
is to be understood in the original sense described by
McIlroy (1968) (who used a sine routine as his example).
Timor is intended to be suitable for developing software
components of various sizes, including quite small
components corresponding to fairly trivial classes in
typical object oriented applications. This does not

preclude an intention also to support the development of
larger components, as the word is frequently understood
today.

Timor supports not only single but also multiple
inheritance, both at the type and implementation levels.
However, in the present paper discussion is restricted to
single inheritance, which is adequate to ill ustrate the three
main issues which we wish to discuss. In section 2 we
describe the separation of types and implementations,
which in most object oriented languages can only be
simulated via inheritance (at the cost of introducing
unintended types). Sections 3 and 4 outline the differing
treatment of behavioural and non-behavioural subtypes.
Sections 5 to 8 show how code can be flexibly re-used to
implement types which are not necessarily related to each
other. An example is provided in section 9. Section 10
provides a comparison with related work and section 11
summarises the paper, adding some final remarks. In later
papers we shall describe how these ideas are extended to
encompass multiple (and repeated) type and
implementation inheritance.

2 Distinguishing Types and Implementations

In a component development environment it is important
to be able to develop different implementations for the
same type (Figure 1). For example a type List might be
implemented as an array, a linked list, etc. This simple
requirement led us to replace the class concept with a
concept which distinguishes between types and their
implementations.

Figure 1: A Type with Multiple Implementations

Implementation 3
Implementation 2

Implementation 1

 Type

A Timor type is defined as follows1:
type Queue {
 maker init(int maxSize);
 op void insertAtBack(ELEMENT e) throws FullEx;
 op ELEMENT removeAtFront() throws EmptyEx;
 enq ELEMENT front() throws EmptyEx;
 enq int length();

1 The quali fier maker introduces an explicitly named
constructor. The quali fier op introduces an operation
(which can modify the state of an instance of the type),
enq introduces an enquiry (which cannot modify the
instance's state). The distinction between op and enq
methods is important for example for defining quali fying
types with bracket routines, cf. Keedy et al. (1997),
Keedy et al. (2000), but is not significant for the present
discussion. The type ELEMENT can be thought of as any
relevant type. Timor supports a generic concept along the
lines described in Evered (1997), Evered et al. (1997), but
again this is not directly relevant to our discussion and is
not described here.

}

This can have several implementations. Here is an array-
based implementation:
impl ArrayQueue1 of Queue {
 ELEMENT[] theArray;
 int maxSize;
 int size = 0;
 int front = 0;
 int back = 0;

 maker init(int maxSize){
 this.maxSize = maxSize;
 theArray = new ELEMENT[maxSize];
 }
 op void insertAtBack(ELEMENT e) throws FullEx {
 if (size < maxSize)
 {theArray[back] = e; back++;
 if (back == maxSize) back = 0; size++;}
 else throw new FullEx();
 }
 op ELEMENT removeAtFront() throws EmptyEx {
 if (size > 0)
 {ELEMENT temp = theArray[front]; front++;
 if (front == maxSize) front = 0; size--;
 return temp;}
 else throw new EmptyEx();
 }
 enq ELEMENT front() throws EmptyEx {
 if (size > 0) return theArray[front];
 else throw new EmptyEx();
 }
 enq int length() {return size;}
}

There are many other possible implementations of Queue,
which could be written as separate implementation
components and given different names. The important
point here is that the behaviour of different
implementations of a type must be equivalent to each
other. We call this behavioural equivalence. It differs
from behavioural conformity in that a subtype
relationship is not involved, i.e. the behaviour of
members cannot be re-specified and new public members
cannot be added in an implementation.

3 Defining the Behaviour of Components

In a situation where components are developed and used
by different groups of programmers it is important that all
concerned have a clear understanding of how components
behave. We have just introduced the term behavioural
equivalence and have already referred in the introduction
to the notion of behavioural conformity as a concept
associated with subtyping.

Formally, both of these notions must be defined in terms
of a formal specification. We intend to add a specification
technique in later versions of Timor, but in the first
version behavioural equivalence can only be defined
intuitively, as the equivalent fulfilment by different
implementations of a type definition (with the help of
comments). Similarly behavioural conformity has initially
to be understood intuitively, in the spirit of the Liskov
and Wing definition.

Suppose, however, that we already had a specification
technique (and that it were powerful enough to describe
the behaviour of types to a degree of detail and accuracy
that we need). This would mean that different
implementations of a type could only be described as
behaviourally equivalent provided that they fulfil the

specification for the type. Similarly subtype
specifications could only be described as behaviourally
conforming in so far as they fulfil the specification of the
supertype. Put another way, an "implementation" of a
type would not be a valid implementation if it did not
fulfil the specification of the type, and a "subtype"
specification would not define a behaviourally
conforming subtype if it did not conform with the
specification of the supertype.

We assume in this context that a formal specification
would be precise in the sense of stating requirements
which have to be fulfill ed, but at the same time it could
leave freedom for different actual behaviours to fulfil
these requirements. Thus for example an abstract type
Collection might specify non-deterministically that
following an insert operation the collection size would
either be increased by one or would not change. In this
way a type Bag (which accepts duplicates), a type Set
(which ignores duplicates) and a type Table (which
throws an exception when an attempt is made to insert a
duplicate) could be behavioural subtypes of the type
Collection. In some cases it can also be appropriate to
provide a null specification, in which case any
syntactically correct implementation fulfils the
specification and any syntactically correct subtype
definition conforms behaviourally with its supertype.

4 Derived Types

Timor supports the definition of types on the basis of
other types in a form which resembles the conventional
object-oriented style of subtyping. Such types are known
as derived types (Figure 2).

Figure 2: A Base Type with a Derived Type

 Derived Type

 Base Type

In definitions of derived types a distinction is drawn
between genuine subtyping, based on the behavioural
notion, and the use of a base type simply as a mechanism
for including interface definitions in a new type without
implying a subtyping relationship. Where behavioural
conformity is intended the supertype is introduced by the
keyword extends, e.g.
type Collection {
 ...
 op void insert(ELEMENT e) throws DuplicateEx;
}
type Bag
 extends Collection
 redefines {
 op void insert(ELEMENT e);
 // the insert method for a Bag
 // does not throw a DuplicateEx.
 }
{ /* no new methods in this example */}

A non-behavioural relationship is introduced by the
keyword includes, e.g.

type DoubleEndedQueue
 includes Queue {
 maker init(int maxSize);
 op void insertAtFront(ELEMENT e) throws FullEx;
 op ELEMENT removeAtBack() throws EmptyEx;
 enq ELEMENT back() throws EmptyEx;
}

Because the inclusion of a base type in another type does
not imply a subtyping relationship, component instances
of the derived type cannot be assigned to variables of the
base type. Thus a component of type DoubleEndedQueue
cannot be assigned to a Queue variable, but a component
of type Bag can be assigned to a variable of type Collec-
tion.

If a method of a supertype is changed in a derived type
(for extensions in a behaviourally conforming manner)
this must appear in a redefines clause. In principle this
requires a new formal specification of the method(s)
involved, but in the first version of Timor this is strictly
speaking only relevant for single inheritance2 in cases
where some exceptions defined in a method of the
supertype cannot be thrown in the derived type, as is
ill ustrated in the type Bag. Since similar changes can be
defined for methods of included types, these may also
appear in a redefines clause.

As the intended behaviour of a method can in principle
change in the first version of Timor even if the signature
does not, programmers must list such members in a
redefines clause even where the signature does not
change. In practice the redefines clause can be viewed
as a list of methods which in an implementation can be
overridden in the object oriented sense. Such changes
must conform behaviourally with an extends supertype
but not with an includes base type. We anticipate that
some (though not exhaustive) checking of behavioural
conformity for methods appearing in a redefines clause
may be possible when a specification technique is added.

5 Implementing Types

An implementation of a type is considered to be an
implementation of all the members of the type. This can
take several forms:

 (a) A type (including a derived type) can have a com-
pletely new implementation (Figure 3).

Figure 3: An Independent Implementation of a Derived
Type according to the Information Hiding Principle

Implementation

 Derived Type

 Base Type

2 Timor supports multiple type inheritance, i.e. more than
one type can appear in the extends and/or includes
clauses. In that case the redefines clause is also used for
the clarification of name collisions.

This is well suited to the information hiding principle
(Parnas, 1972). The new implementation of the meth-
ods of supertypes must conform with the
specifications of the supertypes (where relevant as
redefined in the derived type). The implementation of
new and redefined members must conform with the
specification of the derived type.

 (b) A type (including a derived type) can re-use
implementations of other types (indicated by the
keyword reuses). In contrast with standard OO
practice a subtype relation between the type of the
new implementation and the types of its re-used
implementations need not (but can) exist. Thus code
re-use can be completely decoupled from subtyping
and from the inclusion of interfaces.

 A reuses clause can designate a specific
implementation to be re-used (Figure 4). This
typically reflects the conventional object oriented
style of code inheritance, as is ill ustrated in section 6.

Figure 4: Reuse of a Specific Implementation

Implementation of
another type re-using it

Implementation of
some type

Another Type

A Type

This relationship
need not exist

Alternatively, it can designate a type, any of whose
implementations can be re-used (at the level of the
public members) (Figure 5). This leads to a quite
different style of code re-use, ill ustrated in section 7.

Implementation 3

Implementation 2
Implementation 1

 A Type

Figure 5: Reuse of any Implementation of a Type

Another Type

Implementation of another
type re-using any of its

implementations

 (c) A type can be mapped to another type, and in this

way re-use its implementations, again without
implying a type relationship (Figure 6). This is
ill ustrated in section 8.

Implementation 3

Implementation 2

Figure 6: Mapping a Type to another Type

Implementation 1

A
Mapping

 A Type
mapped to it

for code re-use

Implementation 1

 A Type

Finally, Timor also allows the possibilit y of typeless
implementations. These are free-standing
implementations which have no effect on the type system,
but which can be freely re-used in the implementations of
types.

6 Simulating Subclassing via Code Re-use

In section 2 we ill ustrated an implementation Array-
Queue1 of a type Queue and in section 4 we showed how
the type Queue might have a (non-behavioural) derived
type DoubleEndedQueue. Here an implementation of
DoubleEndedQueue reuses the implementation Array-

Queue1 in a way which resembles the conventional code
inheritance technique (i.e. subclassing):
impl ArrayDEQ1 of DoubleEndedQueue
 reuses ArrayQueue1 {
 op void insertAtFront(ELEMENT e) throws FullEx{
 if (size < maxSize)
 {front--; if (front < 0) front = maxSize - 1;
 theArray[front] = e; size++;}
 else throw new FullEx();
 }
 op ELEMENT removeAtBack() throws EmptyEx{
 if (size > 0)
 {back--; if (back < 0) back = maxSize - 1;
 size--; return theArray[back];}
 else throw new EmptyEx();
 }
 enq ELEMENT back() throws EmptyEx {
 if (size > 0)
 {int i = back - 1;
 if (i < 0) i = maxSize - 1;
 return theArray[i];}
 else throw new EmptyEx();
 }
}

In this example, the implementation of the derived type
nominates an implementation of the type which is to be
re-used (Figure 7). All the methods of a re-used
implementation whose headers match the methods of the
type being implemented are "inherited" (along with any
data structures and methods which they need); any other
methods are ignored.

Figure 7: Simulating Conventional Subclassing

Implementation:
 ArrayDEQ1

Implementation:
 ArrayQueue1

 Derived Type:
DoubleEndedQueue

Base Type:
Queue

Here we see one of the advantages of explicitly naming
constructors (rather than using the type name as a

constructor name, as in Java). In appropriate cases – as
here with respect to the constructor from ArrayQueue1
defined in section 2 – a constructor can be re-used in an
implementation of a different type without having to be
separately coded (and where appropriate explicitly call a
constructor of the supertype).

The nomination of a specific implementation of some
other type for re-use is typical in cases where code re-use
follows the conventional OO inheritance paradigm of
incrementally inheriting from base types (whether or not
the inheritance is behavioural), where access is needed to
data structures. While this style of code re-use is possible
in Timor, it is not the preferred style, as it violates the
information hiding principle and it does not result in
modular components. We now ill ustrate the alternative
style, which is possible because code re-use can be
decoupled from type relationships.

7 Code Re-Use without Type Relationships

Because for subtyping reasons DoubleEndedQueue was
defined by including Queue rather than by extending it,
the two types are not related from the polymorphic
viewpoint. In practice DoubleEndedQueue could therefore
have been defined as a separate type, as follows:
type DoubleEndedQueue{
 maker init(int maxSize);
 op void insertAtFront(ELEMENT e) throws FullEx;
 op void insertAtBack(ELEMENT e) throws FullEx;
 op ELEMENT removeAtFront() throws EmptyEx;
 op ELEMENT removeAtBack() throws EmptyEx;
 enq ELEMENT front() throws EmptyEx;
 enq ELEMENT back() throws EmptyEx;
 enq int length();
}

Regardless whether DoubleEndedQueue was defined as a
separate type or as a derived type, it has the above
interface, and it can be treated as a separate type for im-
plementation purposes. (This holds also for a behav-
iourally conforming subtype: any type can be imple-
mented using any of the techniques described in section
5, regardless of its type relationships.)

A significant advantage of implementing any type
without reusing a specific implementation of another type
(i.e. without using the technique ill ustrated in section 6) is
that this can be done in conformance with the information
hiding principle. The type DoubleEndedQueue could have
several such implementations, e.g. ArrayDEQ, Linked-
ListDEQ which do not re-use other code. Given such
independent implementations, all of them could
potentially be re-used to provide implementations of
Queue. The following ill ustrates how this is achieved in
Timor:
impl Queue1 of Queue
 reuses DoubleEndedQueue
{/* no re-implemented methods */}

The reuses clause in this example nominates a type
rather than an implementation, indicating that any
implementation of the type can be re-used (Figure 8).

This has the advantage that for any new implementation
of DoubleEndedQueue there is automatically a new
implementation of Queue. The basic rule is that any
method which appears in the re-used type with an

identical signature is re-used, unless it is overridden in the
new implementation3.

Figure 8: Reusing any Implementation of a Type

This relationship
need not exist

Implementation:
 LinkedListDEQ Implementation 1:

 ArrayDEQ

Type
DoubleEndedQueue

Implementation 1:
 Queue 1 Type

Queue

Some methods of DoubleEndedQueue (e.g. insertAt-
Front) cannot be explicitly invoked by clients of Queue.
Whether such redundant methods (and fields) are
removed from the implementation Queue1 depends on the
compiler (or possibly the component developer). They
can of course only be removed if an analysis by the
compiler shows that they genuinely are redundant (e.g. if
methods are not invoked from the methods which are
required).

8 Mapping Types onto Other Types

Implementations of the type DoubleEndedQueue could be
easily re-used to implement unrelated types which do not
have matching member definitions in their types. For
example a type Stack might be defined as follows:
type Stack {
 maker init(int maxSize);
 op void push(ELEMENT e) throws FullEx;
 op ELEMENT pop() throws EmptyEx;
 enq ELEMENT top() throws EmptyEx;
 enq int length();
}

To allow the re-use of implementations of Double-

EndedQueue for Stack the following map can be
provided:
map StackMap1 from Stack to DoubleEndedQueue {
 op void push(ELEMENT e) => insertAtFront;
 op ELEMENT pop() => removeAtFront;
 enq ELEMENT top() => front;
}

Members of the mapped type which already match (e.g.
in this example the length method and the constructor)
can be omitted from the map. Unmapped members must
be implemented in some other way. When such a map
exists, any implementation of the map's destination type
(here DoubleEndedQueue) can be used to implement the
mapped type, e.g.
impl Stack1 of Stack
 reuses DoubleEndedQueue via StackMap1 {}

This relationship is ill ustrated in Figure 9.

3 Overriding is not ill ustrated in our examples, but it does
not differ significantly from other overriding techniques
which allow the code of an overridden method to be
invoked using a super construct.

Figure 9: Mapping a Stack onto a Double Ended Queue

Stack-
Map1

Implementation:
 LinkedListDEQ Implementation 1:

 ArrayDEQ Implementation 1:
 Stack1

Type
Stack

Type
DoubleEnded-

Queue

In the first version of Timor maps are kept simple, i.e.
there must be an exact signature match; only the names of
members and of parameters may differ between a mapped
member and the member onto which it is mapped.

9 Larger Scale Application

We now briefly describe a realistic library of types and
implementations, developed using the concepts of
behavioural derived types and code re-use. This is the
Timor Collection Library, the design of which is based on
one co-author's doctoral thesis (Menger, 2000).

The aim was to provide a library of collection types and
implementations which orthogonally support the
following properties:

(a) handling the duplication of elements in three forms:

– collections which allow duplicate elements to be
inserted,

– collections which ignore attempts to insert
duplicates,

– collections which signal as exceptions attempts
to insert duplicates.

(b) handling the ordering of elements in three forms:

– unordered,

– user-ordered,

– automatically sorted on the basis of user-defined
criteria.

This leads to nine (three times three) concrete types,
which are organised in a behaviourally conforming
hierarchy that also includes four abstract types
(Collection, DuplicateFreeCollection,

UserOrderedCollection, SortedCollection). Multiple
type inheritance (not described in this paper) was used to
achieve a maximum of behavioural subtyping among
related types.

Implementing this library using the re-use technique
primarily involves coding only two of the concrete types:

– List: duplicates allowed, user-ordered; and

– SortedList: duplicates allowed, sorted.

Furthermore implementations of the type List can be
almost completely re-used in implementations of the type
SortedList. In addition two typeless implementations are
needed to provide trivially redefined routines which
bracket the insert routines of List and SortedList.
These check for attempts to insert duplicate elements into
appropriate types, in one case throwing an exception.

To provide alternative implementations of the entire
library (as arrays, linked lists, doubly linked lists)

requires only a new implementation of List and (a few
methods of) SortedList. The implementations which
carry out duplicate checking can be re-used with any
implementations of the List and SortedList types.
Customised implementations of some types can of course
be provided separately, e.g. an implementation of Set
(duplicates ignored, unordered) and of Table (duplicates
signalled, unordered) as bit li sts, for cases where the
element types can be enumerated.

The result is a fully orthogonal, behaviourally conforming
collection library with a maximum of code re-use as well
as conformance with the information hiding principle. It
can easily be extended by users to support their own
specialised types, and it can be quickly re-implemented
using new data structures.

10 Related Work

Code reuse via inheritance is often considered to be the
most important benefit of object oriented programming.
But earlier OO languages, where classes unify types and
their implementations (e.g. Eiffel, C++), suffer from the
problem that subtyping and subclassing do not always fit
well together, cf. e.g. LaLonde and Pugh (1991).
Nevertheless, even without language support for a clear
separation between types and implementations, it is
sometimes possible to achieve a surprisingly high degree
of separation between types and subtyping on the one
hand and implementations and code reuse on the other
hand.

Taking C++ (Stroustrup, 1997) as an example, "pure"
abstract classes (i.e. classes containing only pure virtual
functions) can be used to model a type hierarchy, while
normal classes can be used to build an independent
implementation hierarchy. Private or protected
inheritance, which prevents a subtype relationship
between base and derived classes, can be used to
represent the implements and reuses relationships of
Timor. In combination with access or using declarations,
even the includes relationship can be simulated, without
creating a subtype relationship. But as C++ has not been
designed to support such a clean separation of types and
implementations, its enforcement by the programmer is
somewhat artificial and more or less tedious. Especially
in cases where an implementation of a completely
unrelated type is to be reused to implement a type, it is
necessary to explicitly merge the abstract methods of the
type being implemented with the corresponding methods
of the reused implementation by providing definitions of
the methods which forward their calls to this
implementation. Furthermore, simply reusing all
implementations of a type to implement another type,
requires similar method definitions which delegate their
work to the methods of the reused type.

For more than a decade the relationship between
subtyping and subclassing has been discussed in the
academic area and languages (e.g. Sather, Signatures and
Brew, Java, Theta, Tau) have been put forward which
attempt to separate types and implementations with the
aim of improving both.

Sather (Stoutamire and Omohundro, 1996) is a
descendant of Eiffel (Meyer, 1992) with a fundamentally
changed type system. Different kinds of relationships
may coexist in a single hierarchy, which has an abstract
class as its root. Abstract classes (without code) model
type relationships, while concrete classes (which may
only appear in leaf nodes) are subtypes of the abstract
class(es) which they implement and are themselves types.
Furthermore, abstract classes can be added
retrospectively to the hierarchy as supertypes of existing
classes. Code reuse is achieved by means of an inclusion
mechanism, which copies code at the source level. Partial
classes are classes which can contain code but which are
not associated with a type; they can neither be
instantiated nor used for variable declarations. Including
code from other classes does not imply a type
relationship. Static type safety is maintained by means of
contravariant type rules. This approach suffers from the
fact that types and implementations are not fully
decoupled from each other, i.e. concrete classes are also
types.

Signatures (Baumgartner and Russo, 1995) have been
suggested (and implemented in the GNU C++ compiler)
as an extension of C++ which supports the separation of
types and implementations more directly and naturally.
The basic idea is that signatures, like abstract classes in
Sather, represent types which can be implemented in
classes, also with the possibilit y that they can be
retrospectively specified. However, signatures cannot
serve as complete type definitions, as they may not
contain constructors. Unlike Sather they are not part of
the class hierarchy. But as signatures have been designed
as a conservative extension of C++, they are unable to
overcome inherent deficiencies of the base language,
especially the fact that classes are also types. With Brew
(Baumgartner et al., 1996), the signature concept has
been realized in a Java-based language.

Java interface types (Arnold et al., 2000) have similarities
with both Sather's abstract classes and with signatures.
However, the separation of interfaces from their
implementations is more explicit and easier to understand
than the Sather approach, because, as with signatures,
interfaces are not part of the class hierarchy. On the other
hand not only are classes also types, but subclassing also
implies a subtype relation. Principles such as information
hiding and programming to interfaces can easily be
circumvented by using classes without giving up subtype
polymorphism (as in Sather). Nevertheless the Java type
system is much simpler than that of Sather. Like
signatures, Java interfaces may not contain constructors.
In contrast with both Sather and the signatures approach,
interfaces may not be defined retrospectively.

In Theta (Liskov et al., 1994) types are cleanly
distinguished from classes, and the idea of multiple
implementations is supported. Subtyping occurs between
types, while classes are not types but only
implementations of types, so that code reuse is as flexible
as in Sather. Constructors may not appear on the type
interface, thereby hindering strict programming to
interfaces and also induction based type verification
(because there is no starting point). Nevertheless, the

clear distinction between types and implementations is a
significant step forward.

Tau (Schmolitzky, 1999) is a radical adaptation of Java
which realises the notion of abstract typing. The
approach is similar to that found in Theta, in that
subtyping occurs between types (called interfaces in
Tau). Classes are not types, and subclassing does not
imply any type relationship. Tau also supports typeless
classes (similar to partial classes in Sather), which are
intended only for code reuse. A decisive further step is
taken in Tau, namely that, in contrast with previous
languages, type interfaces can include abstract
constructors.

Timor is based on the concept of abstract typing in Tau
and adds some new features which are intended to be
useful for developing software components. It emphasises
the significance of behavioural subtyping by permitting a
programmer to define derived types in a subtype
relationship (where behavioural conformity is intended),
while also allowing type interfaces to be included in
derived types without implying such a relationship. Both
forms of derived types allow inherited methods to be
redefined, but they must be listed in a redefines clause,
thus making it easy to identify the “hot spots” of an
implementation. Code reuse can be achieved in a similar
manner to Tau, in a way which resembles subclassing.
However, Timor goes further than Tau by allowing a type
to be named in a reuses clause, thereby indicating that
any implementation of that type can be re-used, with the
advantage that the information hiding principle can also
be preserved between implementations. This applies also
to the mapping technique, which allows one type
interface to be mapped onto another for code reuse
purposes.

11 Summary and Final Remarks

The paper has briefly described how the new
programming language Timor4 handles a number of
issues relating to types and subtyping as well as
implementations and code re-use. Aspects relating to
multiple type inheritance and multiple code re-use have,
however, not been discussed, as these raise a different set
of issues which will be discussed in a future paper.

Motivated by the idea of regarding object oriented units
potentially as general purpose components for use in a
wide range of application systems, the language
distinguishes between types and their implementations
(which are not also types). This division of the traditional
class construct into separate units has a number of
advantages. From the viewpoint of component
development and use it allows a single type to be
implemented in different ways (e.g. reflecting different
time and space tradeoffs), and these separate
implementations can be sold/bought as separate
components. Thus the existence of multiple
implementations for a type does not necessarily imply

4 The current state of Timor is that it is nearing the end of
the design stage. No compiler is yet available.

that more than one implementation will be used in a
particular application program or system5. It does,
however, help to simpli fy some of the problems
associated with subtyping and subclassing.

A user of components representing types and their
implementations needs to understand how these are likely
to behave, especially with respect to the issue of
subtyping. In derived types, which represent a variation
of the traditional form of subtyping, a distinction is drawn
between extending a supertype in a behaviourally
conforming manner and including base types to which the
derived type need not conform behaviourally. In the
absence of a specification technique in the first version of
Timor, the behavioural requirement of extension subtypes
must be regarded as a statement of intent by the designer
rather than a feature which can be checked by the
compiler. Nevertheless there is provision for a redefines
clause in derived types which allows the designer to
indicate where behavioural changes occur.

At the implementation level Timor supports the
conventional code inheritance technique (using a reuses
clause which typically nominates an implementation to be
re-used). However, as the example in section 6 shows,
this technique effectively encourages programmers to
circumvent the information hiding principle by exporting
major data structures. This can be avoided by using the
reuses clause to designate a type, which need not be a
supertype of the type being implemented. As described in
section 7, the information hiding principle is thereby
preserved and any implementation of the designated type
is allowed to be re-used.

Finally a mapping technique is introduced (section 8)
which enhances the possibiliti es of code re-use by
allowing methods of one type to be mapped onto methods
of another type such that the mapped type can be
implemented by re-using implementations of the type
onto which it is mapped. At present this technique
requires an exact match of signatures (except the names
of methods and their parameters), but we anticipate that
the technique will be made more flexible in future
versions of Timor.

The example of the Timor Collection Library, briefly
outlined in section 9, provided us with confirmation of
our view that it is worthwhile in the design of a new
language to keep orthogonal ideas (such as types and
implementations, subtyping and subclassing, behavioural
conformity and behavioural divergence) separate, even if
the language gets marginally larger. It is not a significant
problem later to allow short-cuts for simple cases, such as
allowing "classes" in the form of implementations which
implicitly define their own types.

In summary Timor supports ideas which have already
been proven in other languages and adds new ones which

5 Techniques used in Timor for handling the coexistence
of different implementations in a single program and the
selection of particular implementations are not discussed
in this paper, as these themes are not relevant to the issues
of subtyping which the paper addresses.

are considered to be useful for designing and
implementing software components.

Acknowledgement: Special thanks are due to Dr. Mark
Evered and Dr. Axel Schmolitzky for their invaluable
contributions to the development of Timor ideas.

12 References

ARNOLD, K., GOSLING, J., and HOLMES, D. (2000):
The Java Programming Language, Third
Edition, Addison-Wesley.

BAUMGARTNER, G., LÄUFER, K., and RUSSO, V.F.
(1996): On the Interaction of Object-Oriented
Design Patterns and Programming Languages,
Department of Computer Sciences, Purdue
University, West Lafayette, IN.

BAUMGARTNER, G., and RUSSO, V.F. (1995):
Signatures: A Language Extension for
Improving Type Abstraction and Subtype
Polymorphism in C++. Software - Practice and
Experience 25(8): 863-889.

CARDELLI, L., and WEGNER, P. (1985): On
Understanding Types, Data Abstraction and
Polymorphism. Computing Surveys 17(4): 471-
522.

COOK, W., HILL, W., and CANNING, P. (1990):
Inheritance is Not Subtyping. 17th ACM
Symposium on Principles of Programming
Languages: 125-135.

EVERED, M. (1997): Unconstraining Genericity. 24th
International Conf. on Technology of Object-
Oriented Languages and Systems, Beijing: 423-
431.

EVERED, M., KEEDY, J.L., MENGER, G., and
SCHMOLITZKY, A. (1997): Genja - A New
Proposal for Genericity in Java. 25th
International Conf. on Technology of Object-
Oriented Languages and Systems, Melbourne.

KEEDY, J.L., ESPENLAUB, K., MENGER, G.,
SCHMOLITZKY, A., and EVERED, M. (2000):
Software Reuse in an Object Oriented
Framework: Distinguishing Types from
Implementations and Objects from Attributes.
6th International Conference on Software Reuse,
Vienna.

KEEDY, J.L., EVERED, M., SCHMOLITZKY, A., and
MENGER, G. (1997): Attribute Types and
Bracket Implementations. 25th International
Conf. on Technology of Object-Oriented
Languages and Systems, Melbourne.

LALONDE, W.R., and PUGH, J.R. (1991): Subclassing
≠ Subtyping ≠ Is-a. Journal of Object-Oriented
Programming January 1991: 57-62.

LISKOV, B., CURTIS, D., DAY, M., GHEMAWAT, S.,
GRUBER, R., JOHNSON, P., and MYERS,
A.C. (1994): Theta Reference Manual, MIT

Laboratory for Computer Science, Cambridge,
MA.

LISKOV, B., and WING, J.M. (1994): A Behavioral
Notion of Subtyping. ACM Transactions on
Programming Languages and Systems 16(6):
1811-1841.

MCILROY, M.D. (1968): Mass Produced Software
Components. NATO Conference on Software
Engineering, NATO Science Committee,
Garmisch, Germany: 88-98, Petrocelli -Charter.

MENGER, G. (2000): Unterstützung für Objektsamm-
lungen in statisch getypten objektorientierten
Programmiersprachen (Support for Object
Collections in Statically Typed Object Oriented
Languages): Dept. of Computer Structures,
University of Ulm, Germany.

MEYER, B. (1992): Eiffel: the Language. New York,
Prentice-Hall .

PARNAS, D.L. (1972): On the Criteria To Be Used in
Decomposing Systems into Modules.
Communications of the ACM 15(12): 1053-1058.

SCHMOLITZKY, A. (1999): Ein Modell zur Trennung
von Vererbung und Typabstraktion in objektori-
entierten Sprachen (A Model for Separating
Inheritance and Type Abstraction in Object
Oriented Languages): Dept. of Computer
Structures, University of Ulm, Germany.

STOUTAMIRE, D., and OMOHUNDRO, S. (1996): The
Sather 1.1 Specification, International Computer
Science Institute, Berkley, CA.

STROUSTRUP, B. (1997): The C++ Programming
Language (third edition), Addison Wesley.

