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Abstract 

Unlike most object oriented programming languages 
Timor, which has been designed to support component 
development, replaces the class construct with separate 
constructs for defining types and their implementations 
(which are not types). It also distinguishes between 
behaviourally conforming subtyping and the inclusion of 
behaviourally deviant interfaces in the definition of 
derived types. The separation of types and 
implementations simpli fies a separation of subtyping and 
subclassing, facilit ating the re-use of implementations of 
one type to implement other, unrelated types. A further 
technique allows a type to be mapped onto an unrelated 
type with different method names, such that the latter's 
implementations can also be re-used to implement the 
former. The paper concludes by outlining a substantial 
example based on the Timor Collection Library.. 

Keywords:  Software component, type, subtyping, subclassing, 
polymorphism, behavioural subtyping, base type, derived type, 
code re-use, code mapping. 

1 Introduction 

One of the most significant differences between object 
oriented and other programming languages is their 
explicit support for subtyping. The basic idea is that a 
type (the supertype) can be used as a base for defining a 
new type (the subtype). The subtype can redefine existing 
methods of the supertype and can add new members. 
Instances of subtypes can be assigned to variables of the 
supertype. This use of subtypes is known as inclusion 
polymorphism (Cardelli and Wegner, 1985). 

Because existing methods can be redefined, the behaviour 
of a subtype instance can be quite different from that of 
its supertype, even when used polymorphically as if it 
were an instance of the supertype. It is therefore useful to 
distinguish between behavioural and non-behavioural 
subtypes. Liskov and Wing (1994) have developed a 
behavioural notion of subtyping which differs from 
earlier definitions of the subtype relationship in that 
attention is paid not only to the redefinition of existing 
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methods but also to the significance of new methods, 
which can affect the behaviour of existing methods in the 
presence of aliasing and also in a general computational 
environment that allows multiple users to share mutable 
objects. 

This strong definition of behavioural subtyping excludes 
some cases of subtyping which at first sight may appear 
to be behavioural, for example the relationship between a 
type Queue (as the supertype) and a type DoubleEnded-
Queue (as the subtype). If a programmer uses a Double-
EndedQueue instance as a Queue instance in his program it 
will , assuming that it has been defined and implemented 
in a reasonable way, work perfectly well as a Queue in his 
isolated context. But if the same object instance is 
accessed via other variables as a DoubleEndedQueue (e.g. 
using a method which inserts entries at the "wrong" end) 
it can exhibit properties which do not conform behaviour-
ally with the usual definition of a Queue type. 

On the other hand there are many cases where a 
programmer has no intuitive expectation that a subtype 
will exhibit the same behaviour as a supertype. For 
example a supertype Button defined for use in a 
graphical user interface may have an operation push, the 
behaviour of which is specifically intended to vary 
depending on the kind of button which it actually is, as 
defined in more detail in particular subtypes. 

Definitions of the subtype relationship can also create 
problems at the implementation level. For example, in 
class-based languages the class construct is typically used 
to achieve both subtyping (i.e. a type relationship) and 
subclassing (a code re-use relationship), although these 
are often not compatible with each other, cf. e.g. Cook et 
al. (1990). For example the code of a supertype Queue can 
easily and effectively be re-used in a subtype Double-
EndedQueue, but the fact that this is not a behavioural 
subtype suggests that in some applications the subtype 
relationship should be avoided; however this creates the 
dilemma that the code cannot be re-used. 

In this paper we describe how such issues are handled in 
the programming language Timor, which is currently 
being designed at the University of Ulm in Germany. The 
motivation for Timor is to develop an object-oriented 
language which is suitable for defining and implementing 
software components, whereby the word component here 
is to be understood in the original sense described by 
McIlroy (1968) (who used a sine routine as his example). 
Timor is intended to be suitable for developing software 
components of various sizes, including quite small 
components corresponding to fairly trivial classes in 
typical object oriented applications. This does not 



preclude an intention also to support the development of 
larger components, as the word is frequently understood 
today. 

Timor supports not only single but also multiple 
inheritance, both at the type and implementation levels. 
However, in the present paper discussion is restricted to 
single inheritance, which is adequate to ill ustrate the three 
main issues which we wish to discuss. In section 2 we 
describe the separation of types and implementations, 
which in most object oriented languages can only be 
simulated via inheritance (at the cost of introducing 
unintended types). Sections 3 and 4 outline the differing 
treatment of behavioural and non-behavioural subtypes. 
Sections 5 to 8 show how code can be flexibly re-used to 
implement types which are not necessarily related to each 
other. An example is provided in section 9. Section 10 
provides a comparison with related work and section 11 
summarises the paper, adding some final remarks. In later 
papers we shall describe how these ideas are extended to 
encompass multiple (and repeated) type and 
implementation inheritance. 

2 Distinguishing Types and Implementations 

In a component development environment it is important 
to be able to develop different implementations for the 
same type (Figure 1). For example a type List might be 
implemented as an array, a linked list, etc. This simple 
requirement led us to replace the class concept with a 
concept which distinguishes between types and their 
implementations. 

 

Figure 1: A Type with Multiple Implementations 
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A Timor type is defined as follows1: 
type Queue { 
 maker init(int maxSize); 
 op void insertAtBack(ELEMENT e) throws FullEx; 
 op ELEMENT removeAtFront() throws EmptyEx; 
 enq ELEMENT front() throws EmptyEx; 
 enq int length(); 

                                                           
1 The quali fier maker introduces an explicitly named 
constructor. The quali fier op introduces an operation 
(which can modify the state of an instance of the type), 
enq introduces an enquiry (which cannot modify the 
instance's state). The distinction between op and enq 
methods is important for example for defining quali fying 
types with bracket routines, cf. Keedy et al. (1997), 
Keedy et al. (2000), but is not significant for the present 
discussion. The type ELEMENT can be thought of as any 
relevant type. Timor supports a generic concept along the 
lines described in Evered (1997), Evered et al. (1997), but 
again this is not directly relevant to our discussion and is 
not described here. 

} 

This can have several implementations. Here is an array-
based implementation: 
impl ArrayQueue1 of Queue { 
 ELEMENT[] theArray; 
 int maxSize; 
 int size = 0; 
 int front = 0; 
 int back = 0; 
 
 maker init(int maxSize){ 
  this.maxSize = maxSize; 
  theArray = new ELEMENT[maxSize]; 
 } 
 op void insertAtBack(ELEMENT e) throws FullEx { 
  if (size < maxSize) 
   {theArray[back] = e; back++; 
    if (back == maxSize) back = 0; size++;} 
  else throw new FullEx(); 
 } 
 op ELEMENT removeAtFront() throws EmptyEx { 
  if (size > 0) 
   {ELEMENT temp = theArray[front]; front++; 
    if (front == maxSize) front = 0; size--; 
        return temp;} 
  else throw new EmptyEx(); 
 } 
 enq ELEMENT front() throws EmptyEx { 
  if (size > 0) return theArray[front]; 
  else throw new EmptyEx(); 
 } 
 enq int length() {return size;} 
} 

There are many other possible implementations of Queue, 
which could be written as separate implementation 
components and given different names. The important 
point here is that the behaviour of different 
implementations of a type must be equivalent to each 
other. We call this behavioural equivalence. It differs 
from behavioural conformity in that a subtype 
relationship is not involved, i.e. the behaviour of 
members cannot be re-specified and new public members 
cannot be added in an implementation. 

3 Defining the Behaviour of Components 

In a situation where components are developed and used 
by different groups of programmers it is important that all 
concerned have a clear understanding of how components 
behave. We have just introduced the term behavioural 
equivalence and have already referred in the introduction 
to the notion of behavioural conformity as a concept 
associated with subtyping. 

Formally, both of these notions must be defined in terms 
of a formal specification. We intend to add a specification 
technique in later versions of Timor, but in the first 
version behavioural equivalence can only be defined 
intuitively, as the equivalent fulfilment by different 
implementations of a type definition (with the help of 
comments). Similarly behavioural conformity has initially 
to be understood intuitively, in the spirit of the Liskov 
and Wing definition. 

Suppose, however, that we already had a specification 
technique (and that it were powerful enough to describe 
the behaviour of types to a degree of detail and accuracy 
that we need). This would mean that different 
implementations of a type could only be described as 
behaviourally equivalent provided that they fulfil the 



specification for the type. Similarly subtype 
specifications could only be described as behaviourally 
conforming in so far as they fulfil the specification of the 
supertype. Put another way, an "implementation" of a 
type would not be a valid implementation if it did not 
fulfil the specification of the type, and a "subtype" 
specification would not define a behaviourally 
conforming subtype if it did not conform with the 
specification of the supertype. 

We assume in this context that a formal specification 
would be precise in the sense of stating requirements 
which have to be fulfill ed, but at the same time it could 
leave freedom for different actual behaviours to fulfil 
these requirements. Thus for example an abstract type 
Collection might specify non-deterministically that 
following an insert operation the collection size would 
either be increased by one or would not change. In this 
way a type Bag (which accepts duplicates), a type Set 
(which ignores duplicates) and a type Table (which 
throws an exception when an attempt is made to insert a 
duplicate) could be behavioural subtypes of the type 
Collection. In some cases it can also be appropriate to 
provide a null specification, in which case any 
syntactically correct implementation fulfils the 
specification and any syntactically correct subtype 
definition conforms behaviourally with its supertype. 

4 Derived Types 

Timor supports the definition of types on the basis of 
other types in a form which resembles the conventional 
object-oriented style of subtyping. Such types are known 
as derived types (Figure 2). 

 

Figure 2: A Base Type with a Derived Type 
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In definitions of derived types a distinction is drawn 
between genuine subtyping, based on the behavioural 
notion, and the use of a base type simply as a mechanism 
for including interface definitions in a new type without 
implying a subtyping relationship. Where behavioural 
conformity is intended the supertype is introduced by the 
keyword extends, e.g. 
type Collection { 
 ... 
 op void insert(ELEMENT e) throws DuplicateEx; 
} 
type Bag 
 extends Collection 
 redefines { 
 op void insert(ELEMENT e); 
  // the insert method for a Bag 
  // does not throw a DuplicateEx. 
  } 
{ /* no new methods in this example */} 

A non-behavioural relationship is introduced by the 
keyword includes, e.g. 

type DoubleEndedQueue 
 includes Queue { 
 maker init(int maxSize); 
 op void insertAtFront(ELEMENT e) throws FullEx; 
 op ELEMENT removeAtBack() throws EmptyEx; 
 enq ELEMENT back() throws EmptyEx; 
} 

Because the inclusion of a base type in another type does 
not imply a subtyping relationship, component instances 
of the derived type cannot be assigned to variables of the 
base type. Thus a component of type DoubleEndedQueue 
cannot be assigned to a Queue variable, but a component 
of type Bag can be assigned to a variable of type Collec-
tion. 

If a method of a supertype is changed in a derived type 
(for extensions in a behaviourally conforming manner) 
this must appear in a redefines clause. In principle this 
requires a new formal specification of the method(s) 
involved, but in the first version of Timor this is strictly 
speaking only relevant for single inheritance2 in cases 
where some exceptions defined in a method of the 
supertype cannot be thrown in the derived type, as is 
ill ustrated in the type Bag. Since similar changes can be 
defined for methods of included types, these may also 
appear in a redefines clause. 

As the intended behaviour of a method can in principle 
change in the first version of Timor even if the signature 
does not, programmers must list such members in a 
redefines clause even where the signature does not 
change. In practice the redefines clause can be viewed 
as a list of methods which in an implementation can be 
overridden in the object oriented sense. Such changes 
must conform behaviourally with an extends supertype 
but not with an includes base type. We anticipate that 
some (though not exhaustive) checking of behavioural 
conformity for methods appearing in a redefines clause 
may be possible when a specification technique is added. 

5 Implementing Types 

An implementation of a type is considered to be an 
implementation of all the members of the type. This can 
take several forms: 

 (a) A type (including a derived type) can have a com-
pletely new implementation (Figure 3). 

 

Figure 3: An Independent Implementation of a Derived 
Type according to the Information Hiding Principle 
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2  Timor supports multiple type inheritance, i.e. more than 
one type can appear in the extends and/or includes 
clauses. In that case the redefines clause is also used for 
the clarification of name collisions. 



This is well suited to the information hiding principle 
(Parnas, 1972). The new implementation of the meth-
ods of supertypes must conform with the 
specifications of the supertypes (where relevant as 
redefined in the derived type). The implementation of 
new and redefined members must conform with the 
specification of the derived type. 

 (b) A type (including a derived type) can re-use 
implementations of other types (indicated by the 
keyword reuses). In contrast with standard OO 
practice a subtype relation between the type of the 
new implementation and the types of its re-used 
implementations need not (but can) exist. Thus code 
re-use can be completely decoupled from subtyping 
and from the inclusion of interfaces. 

 A reuses clause can designate a specific 
implementation to be re-used (Figure 4). This 
typically reflects the conventional object oriented 
style of code inheritance, as is ill ustrated in section 6. 

 

Figure 4: Reuse of a Specific Implementation 
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Alternatively, it can designate a type, any of whose 
implementations can be re-used (at the level of the 
public members) (Figure 5). This leads to a quite 
different style of code re-use, ill ustrated in section 7. 
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Figure 5: Reuse of any Implementation of a Type 
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 (c) A type can be mapped to another type, and in this 

way re-use its implementations, again without 
implying a type relationship (Figure 6). This is 
ill ustrated in section 8. 
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Figure 6: Mapping a Type to another Type 
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Finally, Timor also allows the possibilit y of typeless 
implementations. These are free-standing 
implementations which have no effect on the type system, 
but which can be freely re-used in the implementations of 
types. 

6 Simulating Subclassing via Code Re-use 

In section 2 we ill ustrated an implementation Array-
Queue1 of a type Queue and in section 4 we showed how 
the type Queue might have a (non-behavioural) derived 
type DoubleEndedQueue. Here an implementation of 
DoubleEndedQueue reuses the implementation Array-

Queue1 in a way which resembles the conventional code 
inheritance technique (i.e. subclassing): 
impl ArrayDEQ1 of DoubleEndedQueue 
 reuses ArrayQueue1 { 
 op void insertAtFront(ELEMENT e) throws FullEx{ 
  if (size < maxSize) 
   {front--; if (front < 0) front = maxSize - 1; 
    theArray[front] = e; size++;} 
  else throw new FullEx(); 
 } 
 op ELEMENT removeAtBack() throws EmptyEx{ 
  if (size > 0) 
   {back--; if (back < 0) back = maxSize - 1; 
    size--; return theArray[back];} 
  else throw new EmptyEx(); 
 } 
 enq ELEMENT back() throws EmptyEx { 
  if (size > 0) 
   {int i = back - 1; 
    if (i < 0) i = maxSize - 1; 
    return theArray[i];} 
  else throw new EmptyEx(); 
 } 
} 

In this example, the implementation of the derived type 
nominates an implementation of the type which is to be 
re-used (Figure 7). All the methods of a re-used 
implementation whose headers match the methods of the 
type being implemented are "inherited" (along with any 
data structures and methods which they need); any other 
methods are ignored. 

 

Figure 7: Simulating Conventional Subclassing 

Implementation:    
           ArrayDEQ1 

Implementation:     
         ArrayQueue1 

 Derived Type: 
DoubleEndedQueue 

Base Type: 
Queue 

 

Here we see one of the advantages of explicitly naming 
constructors (rather than using the type name as a 



constructor name, as in Java). In appropriate cases – as 
here with respect to the constructor from ArrayQueue1 
defined in section 2 – a constructor can be re-used in an 
implementation of a different type without having to be 
separately coded (and where appropriate explicitly call a 
constructor of the supertype). 

The nomination of a specific implementation of some 
other type for re-use is typical in cases where code re-use 
follows the conventional OO inheritance paradigm of 
incrementally inheriting from base types (whether or not 
the inheritance is behavioural), where access is needed to 
data structures. While this style of code re-use is possible 
in Timor, it is not the preferred style, as it violates the 
information hiding principle and it does not result in 
modular components. We now ill ustrate the alternative 
style, which is possible because code re-use can be 
decoupled from type relationships. 

7 Code Re-Use without Type Relationships 

Because for subtyping reasons DoubleEndedQueue was 
defined by including Queue rather than by extending it, 
the two types are not related from the polymorphic 
viewpoint. In practice DoubleEndedQueue could therefore 
have been defined as a separate type, as follows: 
type DoubleEndedQueue{ 
 maker init(int maxSize); 
 op void insertAtFront(ELEMENT e) throws FullEx; 
 op void insertAtBack(ELEMENT e) throws FullEx; 
 op ELEMENT removeAtFront() throws EmptyEx; 
 op ELEMENT removeAtBack() throws EmptyEx; 
 enq ELEMENT front() throws EmptyEx; 
 enq ELEMENT back() throws EmptyEx; 
 enq int length(); 
} 

Regardless whether DoubleEndedQueue was defined as a 
separate type or as a derived type, it has the above 
interface, and it can be treated as a separate type for im-
plementation purposes. (This holds also for a behav-
iourally conforming subtype: any type can be imple-
mented using any of the techniques described in section 
5, regardless of its type relationships.) 

A significant advantage of implementing any type 
without reusing a specific implementation of another type 
(i.e. without using the technique ill ustrated in section 6) is 
that this can be done in conformance with the information 
hiding principle. The type DoubleEndedQueue could have 
several such implementations, e.g. ArrayDEQ, Linked-
ListDEQ which do not re-use other code. Given such 
independent implementations, all of them could 
potentially be re-used to provide implementations of 
Queue. The following ill ustrates how this is achieved in 
Timor: 
impl Queue1 of Queue 
 reuses DoubleEndedQueue 
{/* no re-implemented methods */} 

The reuses clause in this example nominates a type 
rather than an implementation, indicating that any 
implementation of the type can be re-used (Figure 8). 

This has the advantage that for any new implementation 
of DoubleEndedQueue there is automatically a new 
implementation of Queue. The basic rule is that any 
method which appears in the re-used type with an 

identical signature is re-used, unless it is overridden in the 
new implementation3. 

 

Figure 8: Reusing any Implementation of a Type 

This relationship 
need not exist 

Implementation:       
       LinkedListDEQ Implementation 1: 

            ArrayDEQ 

Type 
DoubleEndedQueue 

Implementation 1: 
            Queue 1 Type 

Queue 

 

Some methods of DoubleEndedQueue (e.g. insertAt-
Front) cannot be explicitly invoked by clients of Queue. 
Whether such redundant methods (and fields) are 
removed from the implementation Queue1 depends on the 
compiler (or possibly the component developer). They 
can of course only be removed if an analysis by the 
compiler shows that they genuinely are redundant (e.g. if 
methods are not invoked from the methods which are 
required). 

8 Mapping Types onto Other Types 

Implementations of the type DoubleEndedQueue could be 
easily re-used to implement unrelated types which do not 
have matching member definitions in their types. For 
example a type Stack might be defined as follows: 
type Stack { 
 maker init(int maxSize); 
 op void push(ELEMENT e) throws FullEx; 
 op ELEMENT pop() throws EmptyEx; 
 enq ELEMENT top() throws EmptyEx; 
 enq int length(); 
} 

To allow the re-use of implementations of Double-

EndedQueue for Stack the following map can be 
provided: 
map StackMap1 from Stack to DoubleEndedQueue { 
 op void push(ELEMENT e) => insertAtFront; 
 op ELEMENT pop() => removeAtFront; 
 enq ELEMENT top() => front; 
} 

Members of the mapped type which already match (e.g. 
in this example the length method and the constructor) 
can be omitted from the map. Unmapped members must 
be implemented in some other way. When such a map 
exists, any implementation of the map's destination type 
(here DoubleEndedQueue) can be used to implement the 
mapped type, e.g. 
impl Stack1 of Stack 
       reuses DoubleEndedQueue via StackMap1 {} 

This relationship is ill ustrated in Figure 9. 

                                                           
3 Overriding is not ill ustrated in our examples, but it does 
not differ significantly from other overriding techniques 
which allow the code of an overridden method to be 
invoked using a super construct. 



 

Figure 9: Mapping a Stack onto a Double Ended Queue 
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In the first version of Timor maps are kept simple, i.e. 
there must be an exact signature match; only the names of 
members and of parameters may differ between a mapped 
member and the member onto which it is mapped. 

9 Larger Scale Application 

We now briefly describe a realistic library of types and 
implementations, developed using the concepts of 
behavioural derived types and code re-use. This is the 
Timor Collection Library, the design of which is based on 
one co-author's doctoral thesis (Menger, 2000). 

The aim was to provide a library of collection types and 
implementations which orthogonally support the 
following properties: 

(a) handling the duplication of elements in three forms: 

– collections which allow duplicate elements to be 
inserted, 

– collections which ignore attempts to insert 
duplicates, 

– collections which signal as exceptions attempts 
to insert duplicates. 

(b) handling the ordering of elements in three forms: 

– unordered, 

– user-ordered, 

– automatically sorted on the basis of user-defined 
criteria. 

This leads to nine (three times three) concrete types, 
which are organised in a behaviourally conforming 
hierarchy that also includes four abstract types 
(Collection, DuplicateFreeCollection, 

UserOrderedCollection, SortedCollection). Multiple 
type inheritance (not described in this paper) was used to 
achieve a maximum of behavioural subtyping among 
related types. 

Implementing this library using the re-use technique 
primarily involves coding only two of the concrete types: 

– List: duplicates allowed, user-ordered; and 

– SortedList: duplicates allowed, sorted. 

Furthermore implementations of the type List can be 
almost completely re-used in implementations of the type 
SortedList. In addition two typeless implementations are 
needed to provide trivially redefined routines which 
bracket the insert routines of List and SortedList. 
These check for attempts to insert duplicate elements into 
appropriate types, in one case throwing an exception. 

To provide alternative implementations of the entire 
library (as arrays, linked lists, doubly linked lists) 

requires only a new implementation of List and (a few 
methods of) SortedList. The implementations which 
carry out duplicate checking can be re-used with any 
implementations of the List and SortedList types. 
Customised implementations of some types can of course 
be provided separately, e.g. an implementation of Set 
(duplicates ignored, unordered) and of Table (duplicates 
signalled, unordered) as bit li sts, for cases where the 
element types can be enumerated. 

The result is a fully orthogonal, behaviourally conforming 
collection library with a maximum of code re-use as well 
as conformance with the information hiding principle. It 
can easily be extended by users to support their own 
specialised types, and it can be quickly re-implemented 
using new data structures. 

10 Related Work 

Code reuse via inheritance is often considered to be the 
most important benefit of object oriented programming. 
But earlier OO languages, where classes unify types and 
their implementations (e.g.  Eiffel, C++), suffer from the 
problem that subtyping and subclassing do not always fit 
well together, cf. e.g. LaLonde and Pugh (1991). 
Nevertheless, even without language support for a clear 
separation between types and implementations, it is 
sometimes possible to achieve a surprisingly high degree 
of separation between types and subtyping on the one 
hand and implementations and code reuse on the other 
hand. 

Taking C++ (Stroustrup, 1997) as an example, "pure" 
abstract classes (i.e. classes containing only pure virtual 
functions) can be used to model a type hierarchy, while 
normal classes can be used to build an independent 
implementation hierarchy. Private or protected 
inheritance, which prevents a subtype relationship 
between base and derived classes, can be used to 
represent the implements and reuses relationships of 
Timor. In combination with access or using declarations, 
even the includes relationship can be simulated, without 
creating a subtype relationship. But as C++ has not been 
designed to support such a clean separation of types and 
implementations, its enforcement by the programmer is 
somewhat artificial and more or less tedious. Especially 
in cases where an implementation of a completely 
unrelated type is to be reused to implement a type, it is 
necessary to explicitly merge the abstract methods of the 
type being implemented with the corresponding methods 
of the reused implementation by providing definitions of 
the methods which forward their calls to this 
implementation. Furthermore, simply reusing all 
implementations of a type to implement another type, 
requires similar method definitions which delegate their 
work to the methods of the reused type. 

For more than a decade the relationship between 
subtyping and subclassing has been discussed in the 
academic area and languages (e.g. Sather, Signatures and 
Brew, Java, Theta, Tau) have been put forward which 
attempt to separate types and implementations with the 
aim of improving both. 



Sather (Stoutamire and Omohundro, 1996) is a 
descendant of Eiffel (Meyer, 1992) with a fundamentally 
changed type system. Different kinds of relationships 
may coexist in a single hierarchy, which has an abstract 
class as its root. Abstract classes (without code) model 
type relationships, while concrete classes (which may 
only appear in leaf nodes) are subtypes of the abstract 
class(es) which they implement and are themselves types. 
Furthermore, abstract classes can be added 
retrospectively to the hierarchy as supertypes of existing 
classes. Code reuse is achieved by means of an inclusion 
mechanism, which copies code at the source level. Partial 
classes are classes which can contain code but which are 
not associated with a type; they can neither be 
instantiated nor used for variable declarations. Including 
code from other classes does not imply a type 
relationship. Static type safety is maintained by means of 
contravariant type rules. This approach suffers from the 
fact that types and implementations are not fully 
decoupled from each other, i.e. concrete classes are also 
types. 

Signatures (Baumgartner and Russo, 1995) have been 
suggested (and implemented in the GNU C++ compiler) 
as an extension of C++ which supports the separation of 
types and implementations more directly and naturally. 
The basic idea is that signatures, like abstract classes in 
Sather, represent types which can be implemented in 
classes, also with the possibilit y that they can be 
retrospectively specified. However, signatures cannot 
serve as complete type definitions, as they may not 
contain constructors. Unlike Sather they are not part of 
the class hierarchy. But as signatures have been designed 
as a conservative extension of C++, they are unable to 
overcome inherent deficiencies of the base language, 
especially the fact that classes are also types.  With Brew 
(Baumgartner et al., 1996), the signature concept has 
been realized in a Java-based language. 

Java interface types (Arnold et al., 2000) have similarities 
with both Sather's abstract classes and with signatures. 
However, the separation of interfaces from their 
implementations is more explicit and easier to understand 
than the Sather approach, because, as with signatures, 
interfaces are not part of the class hierarchy. On the other 
hand not only are classes also types, but subclassing also 
implies a subtype relation. Principles such as information 
hiding and programming to interfaces can easily be 
circumvented by using classes without giving up subtype 
polymorphism (as in Sather). Nevertheless the Java type 
system is much simpler than that of  Sather. Like 
signatures, Java interfaces may not contain constructors. 
In contrast with both Sather and the signatures approach, 
interfaces may not be defined retrospectively. 

In Theta (Liskov et al., 1994) types are cleanly 
distinguished from classes, and the idea of multiple 
implementations is supported. Subtyping occurs between 
types, while classes are not types but only 
implementations of types, so that code reuse is as flexible 
as in Sather. Constructors may not appear on the type 
interface, thereby hindering strict programming to 
interfaces and also induction based type verification 
(because there is no starting point). Nevertheless, the 

clear distinction between types and implementations is a 
significant step forward. 

Tau (Schmolitzky, 1999) is a radical adaptation of Java 
which realises the notion of abstract typing. The 
approach is similar to that found in Theta, in that 
subtyping occurs between types (called interfaces in 
Tau). Classes are not types, and subclassing does not 
imply any type relationship. Tau also supports typeless 
classes (similar to partial classes in Sather), which are 
intended only for code reuse. A decisive further step is 
taken in Tau, namely that, in contrast with previous 
languages, type interfaces can include abstract 
constructors. 

Timor is based on the concept of abstract typing in Tau 
and adds some new features which are intended to be 
useful for developing software components. It emphasises 
the significance of behavioural subtyping by permitting a 
programmer to define derived types in a subtype 
relationship (where behavioural conformity is intended), 
while also allowing type interfaces to be included in 
derived types without implying such a relationship. Both 
forms of derived types allow inherited methods to be 
redefined, but they must be listed in a redefines clause, 
thus making it easy to identify the “hot spots”  of an 
implementation. Code reuse can be achieved in a similar 
manner to Tau, in a way which resembles subclassing. 
However, Timor goes further than Tau by allowing a type 
to be named in a reuses clause, thereby indicating that 
any implementation of that type can be re-used, with the 
advantage that the information hiding principle can also 
be preserved between implementations. This applies also 
to the mapping technique, which allows one type 
interface to be mapped onto another for code reuse 
purposes. 

11 Summary and Final Remarks 

The paper has briefly described how the new 
programming language Timor4 handles a number of 
issues relating to types and subtyping as well as 
implementations and code re-use. Aspects relating to 
multiple type inheritance and multiple code re-use have, 
however, not been discussed, as these raise a different set 
of issues which will be discussed in a future paper. 

Motivated by the idea of regarding object oriented units 
potentially as general purpose components for use in a 
wide range of application systems, the language 
distinguishes between types and their implementations 
(which are not also types). This division of the traditional 
class construct into separate units has a number of 
advantages. From the viewpoint of component 
development and use it allows a single type to be 
implemented in different ways (e.g. reflecting different 
time and space tradeoffs), and these separate 
implementations can be sold/bought as separate 
components. Thus the existence of multiple 
implementations for a type does not necessarily imply 

                                                           
4  The current state of Timor is that it is nearing the end of 
the design stage. No compiler is yet available. 



that more than one implementation will be used in a 
particular application program or system5. It does, 
however, help to simpli fy some of the problems 
associated with subtyping and subclassing. 

A user of components representing types and their 
implementations needs to understand how these are likely 
to behave, especially with respect to the issue of 
subtyping. In derived types, which represent a variation 
of the traditional form of subtyping, a distinction is drawn 
between extending a supertype in a behaviourally 
conforming manner and including base types to which the 
derived type need not conform behaviourally. In the 
absence of a specification technique in the first version of 
Timor, the behavioural requirement of extension subtypes 
must be regarded as a statement of intent by the designer 
rather than a feature which can be checked by the 
compiler. Nevertheless there is provision for a redefines 
clause in derived types which allows the designer to 
indicate where behavioural changes occur. 

At the implementation level Timor supports the 
conventional code inheritance technique (using a reuses 
clause which typically nominates an implementation to be 
re-used). However, as the example in section 6 shows, 
this technique effectively encourages programmers to 
circumvent the information hiding principle by exporting 
major data structures. This can be avoided by using the 
reuses clause to designate a type, which need not be a 
supertype of the type being implemented. As described in 
section 7, the information hiding principle is thereby 
preserved and any implementation of the designated type 
is allowed to be re-used. 

Finally a mapping technique is introduced (section 8) 
which enhances the possibiliti es of code re-use by 
allowing methods of one type to be mapped onto methods 
of another type such that the mapped type can be 
implemented by re-using implementations of the type 
onto which it is mapped. At present this technique 
requires an exact match of signatures (except the names 
of methods and their parameters), but we anticipate that 
the technique will be made more flexible in future 
versions of Timor. 

The example of the Timor Collection Library, briefly 
outlined in section 9, provided us with confirmation of 
our view that it is worthwhile in the design of a new 
language to keep orthogonal ideas (such as types and 
implementations, subtyping and subclassing, behavioural 
conformity and behavioural divergence) separate, even if 
the language gets marginally larger. It is not a significant 
problem later to allow short-cuts for simple cases, such as 
allowing "classes" in the form of implementations which 
implicitly define their own types. 

In summary Timor supports ideas which have already 
been proven in other languages and adds new ones which 

                                                           
5 Techniques used in Timor for handling the coexistence 
of different implementations in a single program and the 
selection of particular implementations are not discussed 
in this paper, as these themes are not relevant to the issues 
of subtyping which the paper addresses. 

are considered to be useful for designing and 
implementing software components. 
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